Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T10:07:59.312Z Has data issue: false hasContentIssue false

A wiggle-match date for Polynesian settlement of New Zealand

Published online by Cambridge University Press:  02 January 2015

Alan G. Hogg
Affiliation:
Waikato Radiocarbon Dating Laboratory, University of Waikato, Private Bag 3105, Hamilton, New Zealand. ([email protected])
Thomas F. G. Higham
Affiliation:
Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QJ, England, U.K.
David J. Lowe
Affiliation:
Department of Earth Sciences, University of Waikato, Private Bag 3105, Hamilton, New Zealand
Jonathan G. Palmer
Affiliation:
School of Archaeology and Palaeoecology, Queen's University of Belfast, Belfast BT7 1NN, Northern Ireland, U.K.
Paula J. Reimer
Affiliation:
Center for Accelerator Mass Spectrometry L–397, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550, U.S.A.
Rewi M. Newnham
Affiliation:
Department of Geographical Sciences, University of Plymouth, Plymouth PL4 8AA, England, U.K.

Abstract

Dating initial colonisation and environmental impacts by Polynesians in New Zealand is controversial. A key horizon is provided by the Kaharoa Tephra, deposited from an eruption of Mt Tarawera, because just underneath this layer are the first signs of forest clearance which imply human settlement. The authors used a log of celery pine from within Kaharoa deposits to derive a new precise date for the eruption via “wiggle-matching” – matching the radiocarbon dates of a sequence of samples from the log with the Southern Hemisphere calibration curve. The date obtained was 1314 ± 12 AD (2σ error), and the first environmental impacts and human occupation are argued to have occurred in the previous 50 years, i.e. in the late 13th – early 14th centuries AD. This date is contemporary with earliest settlement dates determined from archaeological sites in the New Zealand archipelago.

Type
Method
Copyright
Copyright © Antiquity Publications Ltd. 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, A. J. 1991. The chronology of colonisation in New Zealand, Antiquity 65: 767—795.Google Scholar
Anderson, A. J. 1996. Was Rattus exulans in New Zealand 2000 years ago? AMS radiocarbon ages from Shag River Mouth, Archaeology in Oceania 31: 178184.Google Scholar
Anderson, A. J. 2000. Differential reliability of 14C AMS ages of Rattus exulans bone gelatine in south Pacific prehistory, Journal of the Royal Society of New Zealand 30: 243—261.CrossRefGoogle Scholar
Anderson, A. J., Higham, T. F. G. & Wallace, R. D.. 2001. The radiocarbon chronology of the Norfolk Island archaeological sites, in Anderson, A. J. & White, J. P. (ed.), The Prehistoric Archaeology of Norfolk Island, Southwest Pacific. Records of the Australian Museum Supplement 27: 3342. Sydney: Australian Museum.Google Scholar
Beavan, N. R. & Sparks, R. J.. 1998. Factors influencing 14C ages of the Pacific rat Rattus exulans, Radiocarbon 40: 601—613.CrossRefGoogle Scholar
Brook, F. J. 1999. Stratigraphy, landsnail faunas, and palaeoenvironmental history of coastal dunefields at Te Werahi, northernmost New Zealand, Journal of the Royal Society of New Zealand 29: 361—393.Google Scholar
Brook, F. J. 2000. Prehistoric predation of the landsnail Placostylus ambagiosus Suter (Stylommatophora: Bulimulidae), and evidence for the timing of establishment of rats in northernmost New Zealand, Journal of the Royal Society of New Zealand 30: 227—241.Google Scholar
Christen, J. A. & Litton, C. D.. 1995. A Bayesian—approach to wiggle-matching,—Journal of Archaeological Science 22: 719—725.CrossRefGoogle Scholar
Elliot, M. B., Striewski, B., Flenley, J. R., Kirkman, J. H. & Sutton, D. G.. 1997. A 4300 year palynological record of environmental change and human impact from Wharau Road swamp, Northland, New Zealand, Journal of the Royal Society of New Zealand 27: 401—418.CrossRefGoogle Scholar
Froggatt, P. C. & Lowe, D. J.. 1990. A review of late Quaternary silicic and some other tephra formations from New Zealand: their stratigraphy, nomenclature, distribution, volume, and age, New Zealand Journal of Geology and Geophysics 33: 88—99.Google Scholar
Hedges, R. E. M. 2000. Appraisal of radiocarbon dating of kiore bones (Pacific rat Rattus exulans) in New Zealand, Journal of the Royal Society of New Zealand 30: 385398.CrossRefGoogle Scholar
Hellstrom, J., Mcculloch, M. & Stone, J.. 1998. A detailed 31,000-year record of climate and vegetation change from the isotope geochemistry of two New Zealand speleothems, Quaternary Research 50: 167178.Google Scholar
Higham, T. F. G. & Hogg, A. G.. 1997. Evidence for late Polynesian colonisation of New Zealand: University of Waikato radiocarbon measurements, Radiocarbon 39: 149192.CrossRefGoogle Scholar
Higham, T. F. G. & Johnson, L.. 1996. The prehistoric chronology of Raoul Island, the Kermadec Group, Archaeology in Oceania 31: 207213.Google Scholar
Higham, TF.G. & Petchey, F. J.. 2000. On the reliability of archaeological rat bone for radiocarbon dating in New Zealand, Journal of the Royal Society of New Zealand 30: 399409.Google Scholar
Higham, T. F. G., Anderson, A. J. & Jacomb, C.. 1999. Dating the first New Zealanders: the chronology of Wairau Bar, Antiquity 73: 420427.Google Scholar
Hogg, A. G. 1992. Performance and design of 0.3-ml to 10-ml synthetic silica liquid scintillation vials for low-level-14C determination, Radiocarbon 34: 135142.Google Scholar
Hogg, A. G., Mccormac, F. G., Higham, T. F. G., Reimer, P. J., Baillie, M. G. L., Palmer, J. G. & Stuiver, M.. 2002. High-precision 14C measurements of contemporaneous tree-ring dated wood from the British Isles and New Zealand: AD 1850 - 950, Radiocarbon 44(3) in pressGoogle Scholar
Holdaway, R. N. 1996. Arrival of rats in New Zealand, Nature 384: 225226.CrossRefGoogle Scholar
Holdaway, R. N. 1999. A spatio-temporal model for the invasion of the New Zealand archipelago by the Pacific rat Rattus exulans , Journal of the Royal Society of New Zealand 29: 91105.CrossRefGoogle Scholar
Holdaway, R. N. & Beavan, N. R.. 1999. Reliable 14C AMS dates on bird and Pacific rat Rattus exulans bone gelatin, from a CaCO3-rich deposit, Journal of the Royal Society of New Zealand 29: 185211.CrossRefGoogle Scholar
Holdaway, R. N., Roberts, R. G., Beavan- Athfield, N. R., Olley, J. M. & Worthy, T. H.. 2002. Optical dating of quartz sediments and accelerator mass spectrometry 14c dating of bone gelatin and moa eggshell: a comparison of age estimates for non-archaeological deposits in New Zealand, Journal of the Royal Society of New Zealand 32: 463505.Google Scholar
Horrocks, M., Nichol, S. L., Gregory, M. R., Creese, R. & P.C. Augustinus. 2001a. A Holocene pollen and sediment record of Whangape Harbour, far northern New Zealand, Journal of the Royal Society of New Zealand 31: 411424.CrossRefGoogle Scholar
Horrocks, M., Deng, Y., Ogden, J., Alloway, B. V., Nichol, S. & Sutton, D. G.. 2001b. High spatial resolution of pollen and charcoal in relation to the c. 600 year BP Kaharoa Tephra: implications for Polynesian settlement of Great Barrier Island New Zealand, Journal of Archaeological Science 28: 153168.Google Scholar
Kilian, M. R., Van Der Plicht, J. & Van Geel, B.. 1995. Dating raised bogs: new 14C AMS wiggle matching, a reservoir effect and climatic change, Quaternary Science Reviews 14: 959966.Google Scholar
Kilian, M. R., Van Geel, B. & Van Der Plicht, J.. 2000. 14C AMS wiggle matching raised bog deposits and models of peat accumulation, Quaternary Science Reviews 19: 10111033.Google Scholar
Kojo, Y., Kalin, R. M. & Long, A.. 1994. High-precision wiggle-matching in radiocarbon dating, Journal of A rchaeological Science 21: 475479.Google Scholar
Kondo, R., Childs, C. W. & Atkinson, I.. 1994. Opal Phytoliths in New Zealand. Lincoln: Manaaki Whenua Press.Google Scholar
Lowe, D. J. & De Lange, W. P.. 2000. Volcano-meteorological tsunamis, the c. AD 200 Taupo eruption (New Zealand) and the possibility of a global tsunami, The Holocene 10: 401407.Google Scholar
Lowe, D. J. & Hunt, J. B.. 2001. A summary of terminology used in tephra-related studies, in Juvigné, E. T. & Raynal, J-P. (ed.), ‘Tephras: Chronology, Archaeology’. Les dossiers de l’Archaéo-Logis 1: 17— 22. Goudet (France): CDERAD.Google Scholar
Lowe, D. J., Mcfadgen, B. G., Higham, T. F. G., Hogg, A. G., Froggatt, P. C. & Nairn, I. A.. 1998. Radiocarbon age of the Kaharoa Tephra, a key marker for late-Holocene stratigraphy and archaeology in New Zealand, The Holocene 8: 499507.CrossRefGoogle Scholar
Lowe, D. J., Newnham, R. M., Mcfadgen, B. G. & Higham, T. F. G.. 2000. Tephras and New Zealand archaeology, Journal of Archaeological Science 27: 859870.CrossRefGoogle Scholar
Lowe, D. J., Newnham, R. M. & Mccraw, J. D.. 2002. Volcanism and early Maori society in New Zealand, in Torrence, R. & Grattan, J. (ed.), Natural Disasters and Cultural Change: 126161. London: Routledge.Google Scholar
Lowe, D. J., Newnham, R. M., Higham, T. F. G., Wilmshurst, J. M., Mcglone, M. S. & Hogg, A. G.. in press. Dating earliest human impact and settlement in New Zealand, in D.G. Sutton (ed.), Origins of the First New Zealanders 2nd edition. Auckland: Auckland University Press.Google Scholar
Matisoo-Smith, E., Roberts, R. M., Irwin, G. J., Allen, J. S., Penny, D. & Lambert, D. M.. 1998. Patterns of prehistoric human mobility in Polynesia indicated by mtDNA from the Pacific rat, Proceedings of the National Academy of Sciences USA 95: 1514515150.CrossRefGoogle ScholarPubMed
Mccormac, F. G., Hogg, A. G., Higham, T. F. G., Baillie, M. G. L., Palmer, J. G., Xiong, L., Pilcher, J. R., Brown, D. & Hoper, S. T.. 1998a. Variations of radiocarbon in tree-rings: Southern Hemisphere offset preliminary results, Radiocarbon 40: 1153— 1159.CrossRefGoogle Scholar
Mccormac, F. G., Hogg, A. G., Higham, T. F. G., Lynch-Steiglitz, J., Broecker, W. S., Baillie, M. G. I., Palmer, J. G., Xiong, L., Pilcher, J. R., Brown, D. & Hoper, S. T.. 1998b. Temporal variation in the interhemispheric 14C offset, Geophysical Research Letters 25: 1321—1324.Google Scholar
Mcfadgen, B. G. 1994. Coastal stratigraphic evidence for human settlement, in Sutton, D. G. (ed.), Origins of the First New Zealanders: 195—207. Auckland: Auckland University Press.Google Scholar
Mcfadgen, B. G., Knox, F. B. & Cole, T. R. L.. 1994. 14C calibration curve variations and their implications for the interpretation of New Zealand prehistory, Radiocarbon 36: 221—236.Google Scholar
Mcglone, M. S. 1989. The Polynesian settlement of New Zealand in relation to environmental and biotic changes, New Zealand Journal of Ecology (Supplement) 12: 115—129.Google Scholar
Mcglone, M. S. & Wilmshurst, J. M.. 1999. Dating initial Maori environmental impact in New Zealand, Quaternary International 59: 5—16.Google Scholar
Murray-Macintosh, R. P., Scrimshaw, B. J., Hatfield, P. J. & Penny, D.. 1998. Testing migration patterns and estimating founding population size in Polynesian by using human mtDNA sequences, Proceeding of the National Academy of Sciences, USA 95: 9047—9052.Google Scholar
Nairn, I. A., Self, S., Cole, J. W., Leonard, G. S. & Scutter, C.. 2001. Distribution, stratigraphy, and history of proximal deposits from the c. AD 1305 Kaharoa eruptive episode at Tarawera volcano, New Zealand, New Zealand Journal of Geology and Geophysics 44: 467484.Google Scholar
Newnham, R. M., Lowe, D. J., Mcglone, M. S., Wilmshurst, J. M. & Higham, T. F. G.. 1998a. The Kaharoa Tephra as a critical datum for earliest human impact in northern New Zealand, Journal of Archaeological Science 25: 533—544.CrossRefGoogle Scholar
Newnham, R. M., Lowe, D. J. & Matthews, B. W.. 1998b. A late Holocene and prehistoric record of environmental change from Lake Waikaremoana, New Zealand, The Holocene 8: 443454.Google Scholar
Newnham, R. M., Lowe, D. J. & Williams, P. W.. 1999. Quaternary environmental change in New Zealand: a review, Progress in Physical Geography 23: 567—610.Google Scholar
Norton, D. A., & Palmer, J. G.. 1992. Dendroclimatic evidence from Australasia, in Bradely, R. S. & Jones, P. D. (ed.), Climate Since AD 1500: 463—482. London: Routledge.Google Scholar
Ogden, J., Basher, L. R. & Mcglone, M. S.. 1998. Fire, forest regeneration and links with early human habitation: evidence from New Zealand, Annals of Botany 81: 687—696.Google Scholar
Page, M. J. & Trustrum, N. A.. 1997. A late Holocene lake sediment record of the erosion response to land use change in a steepland catchment, New Zealand, Zeistschrift für Geomorphologie 41: 369— 392.Google Scholar
Palmer, J. G., Ogden, J. & Patel, R. N.. 1988. A 426-year floating tree-ring chronology from Phyllocladus trichomanoides buried by the Taupo eruption at Pureora, central North Island, New Zealand, Journal of the Royal Society of New Zealand 18: 407415.Google Scholar
Pearson, G. W. 1986. Precise calendrical dating of known growth-period samples using a ‘curve fitting’ technique, Radiocarbon 28: 292—299.CrossRefGoogle Scholar
Penny, D., Murray-Mcintosh, R. & Harrison, G. L.. 2002. Estimating the number of females in the founding population of New Zealand: analysis of mtDNA variation, Journal of the Polynesian Society 111: 207—221.Google Scholar
Ramsey, C. B. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program, Radiocarbon 37: 425—430.Google Scholar
Ramsey, C. B. 2001. Development of the radiocarbon calibration programme, Radiocarbon 43: 355—363.Google Scholar
Ramsey, C. B., Van Der Plicht, J. & Weninger, B.. 2001. ‘Wiggle matching’ radiocarbon dates, Radiocarbon 43: 381—389.Google Scholar
Roberts, M. 1991. Origin, dispersal routes, and geographic distribution of Rattus exulans, with special reference to New Zealand, Pacific Science 45: 123—130.Google Scholar
Sase, T. & Hosono, M.. 1996. Vegetation histories of Holocene volcanic ash soils in Japan and New Zealand — relationship between genesis of melanic volcanic ash soils and human impact, Earth Science (Chikyu Kagaku) 50: 66—82.Google Scholar
Schulman, E. 1956. Dendroclimatic Changes in Semiarid America. Tucson: University of Arizona Press.Google Scholar
Shepherd, M. J., Mcfadgen, B. G., Betts, H. D. & Sutton, D. G.. 1997. Formation, landforms and palaeoenvironment of Matakana island and implications for archaeology, Science and Research Series 102. Wellington: Department of Conservation.Google Scholar
Smith, I. W. G. & Anderson, A. J.. 1998. Radiocarbon dates from archaeological rat bones: the Pleasant River case, Archaeology in Oceania 33: 88—91.Google Scholar
Sparks, R. J., Melhuish, W. H., Mckee, J. W. A., Ogden, J. & Palmer, J. G.. 1995. 14C calibration in the Southern Hemisphere and the date of the last Taupo eruption: evidence from tree-ring sequences, Radiocarbon 37: 155—163.Google Scholar
Speranza, A., Van Der Plicht, J. & Van Geel, B.. 2000. Improving the time control of the Subboreal/Subatlantic transition in a Czech peat sequence by C-14 wiggle-matching, Quaternary Science Reviews 19: 15891604.CrossRefGoogle Scholar
Sutton, D. G. 1987. A paradigmatic shift in Polynesian prehistory: implications for New Zealand, New Zealand Journal of Archaeology 9: 135155.Google Scholar
Sutton, D. G. 1994. Conclusions: origins, in Sutton, D. G. (ed.), Origins of the First New Zealanders 243258. Auckland: Auckland University Press.Google Scholar
Van Der Plicht, J., Jansma, E. & Kars, H.. 1995. The “Amsterdam Castle”: a case study of wiggle matching and the proper calibration curve, Radiocarbon 37: 965968.Google Scholar
Van Geel, B., Buurman, J. & Waterbolk, H. T.. 1996. Archaeological and palaeoecological indications of an abrupt climate change in The Netherlands, and evidence for climatological teleconnections around 2650 BP, Journal of Quaternary Science 11: 451460.3.0.CO;2-9>CrossRefGoogle Scholar
Wilmshurst, J. M. 1997. The impact of human settlement on vegetation and soil stability in Hawke’s Bay, New Zealand, New Zealand Journal of Botany 35: 97111.Google Scholar
Wilmshurst, J. M., Mcglone, M. S. & Partridge, T. R. 1997. A late Holocene history of natural disturbance in lowland podocarp/hardwood forest, Hawke’s Bay, New Zealand, New Zealand Journal of Botany 35: 7996.CrossRefGoogle Scholar