Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T21:37:03.888Z Has data issue: false hasContentIssue false

In defence of lead isotope analysis

Published online by Cambridge University Press:  02 January 2015

M. S. Tite*
Affiliation:
Research Laboratory for Archaeology and the History of Art, 6 Keble Road, Oxford OX1 3QJ, England

Extract

The head of the Oxford University Research Laboratory for Archaeology and the History of Art takes issue with comment on archaeometallurgical work at Oxford made in ANTIQUITY earlier in the year.

Type
Notes
Copyright
Copyright © Antiquity Publications Ltd. 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, I. L., Gramlich, J.W., Diaz, M. G. & Brill, R. H.. 1978. The possible change of lead isotope ratios in the manufacture of pigments: a fractionation experiment, in Carter, G. F. (ed.), Archaeological Chemistry II: 2737. Washington (DC): American Chemical Society. Advances in Chemistry series 171.Google Scholar
Begemann, F., Schmitt-Strkcker, S. & PiìRnicka, E.. 1989. Isotopie composition of lead in early metal artefacts: results, possibilities and limitations, in Hauptmann et al. (ed.): 269–78.Google Scholar
Budd, P., Gale, D., Pollard, A. M., Thomas, R. G. & Williams, P. A.. 1992. The early development of metallurgy in the British Isles, Antiquity 66: 677–86.Google Scholar
Budd, P.. Pollard, A. M., Scaife, B. & Thomas, R. G.. 1995a. The possible fractionation of lead isotopes in ancient metallurgical processes, Archaeometry 37: 143–50.Google Scholar
Budd, P., Hacgerty, R., Pollard, A. M., Scaife, B. & Thomas, R. G.. 1995b. New heavy isotope studies in archaeology, Israel Journal of Chemistry 35: 125–30.Google Scholar
Budd, P., Pollard, A. M., Scaife, B. & Thomas, R. G.. 1995C. Oxhide ingots, recycling and the Mediterranean metals trade, Journal of Mediterranean Archaeology 8: 132.Google Scholar
Budd, P., Hacgerty, R., Pollard, A. M., Scaife, B. & Thomas, R. G.. 1996. Rethinking the quest for provenance, Antiquity 70: 168–74.Google Scholar
Gale, N. H. & Stos-Gale, Z. A. 1981. Cycladic lead and silver metallurgy, Annual of the British School at Athens 76: 169224.Google Scholar
Gale, N. H. & Stos-Gale, Z. A. 1982. Bronze Age copper sources in the Mediterranean: a new approach, Science 216(4541):1119 Google Scholar
Gale, N. H. & Stos-Gale, Z. A. 1988. Bronze Age archaeometallurgy of the Mediterranean: the impact of lead isotope studies, in Allen, R. O. (ed.), Archaeological Chemistry IV: 159–98. Washington (DC): American Chemical Society.Google Scholar
Gale, N. H. & Stos-Gale, Z. A. 1992. Lead isotope studies in the Aegean (The British Academy Project), in Pollard, A. M. (ed.), New developments in archaeological science: 63108. Proceedings of the British Academy 77. Google Scholar
Gale, N. H. & Stos-Gale, Z. A. 1996. Lead isotope methodology: the possible fractionation of lead isotope compositions during metallurgical processes, in Demirci, S., Ozer, A. M. & Summers, G. D. (ed.), Archaeometry 94, Proceedings of the 29th International Symposium on Archaeometry: 287-99. Ankara: Tubitak.Google Scholar
Hauptmann, A., Pernicka, E. & Wagner, C.A. (ed.). 1989.Old World archaeometallurgy. Bochum: Der Anschnitt Beiheft 7.Google Scholar
Pernicka, E. 1992. Evaluating lead isotope data (comments on Sayre et al. 1992). Archaeometry 34: 3226.Google Scholar
Pernicka, E. & Bachmann, H. G.. 1983. Archäometallurgische Untersuchungen zur antiken Siibergewinmmg in Laurion III: Das Verhalten einiger Spurenelemente beim Abtreiben des Bleis, Erzmetail 36(12):592-7.Google Scholar
Pollard, A. M. & Heron, C.. 1996. Archaeological chemistry. Cambridge: The Royal Society of Chemistry.Google Scholar
Reedy, C.L. & Reedy, T. S.. 1988. Lead isotope analyses for provenance studies in the Aegean region: a re-evaluation, in Sayre, E. V. et al. (ed.). Materials issues in art and archaeology: 6570. Pittsburgh (PA): Materials Research Society.Google Scholar
Rohi, B.M. 1995. Application of lead isotope analysis to Bronze Age metalwork from England and Wales . Unpublished DPhil. thesis, Oxford Unwersity.Google Scholar
Rohi, B.M. 1996. Lead isotope data from the Isotrace Laboratory, Oxford: Archaeometry data base 2, galena from Britain and Ireland, Archaeometry 38: 165–80.Google Scholar
Sayre, E. V., Yener, K. A., Joel, E. C. & Barnes, I. L.. 1992. Statistical evaluation of the presently accumulated lead isotope data from Anatolia and surrounding regions, Archaeometry 34: 73106.CrossRefGoogle Scholar
Stos-Gale, Z., Gale, N. H., Houghton, J. & Spearman, R.. 1995. Lead isotope data from the Isotrace Laboratory, Oxford: Archaeometry data base 1, ores from the western Mediterranean, Archaeometry 37: 407–15.Google Scholar
Wagner, G. A., Oztunali, O. & Eibner, C.. 1989. Early copper in Anatolia, in Hauptmann et al. (ed.): 299305.Google Scholar
Yener, K. A., Sayre, E. V., Joel, E. C., Ozbal, H., Barnes, I. L. & Brill, R. H.. 1991. Stable lead isotope studies of central Taurus ore sources and related artefacts from eastern Mediterranean Chalcolithic and Bronze Age sites, Journal of Archaeological Science 18: 541–77.Google Scholar