Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T00:14:08.226Z Has data issue: false hasContentIssue false

Birch-bark tar in the Roman world: the persistence of an ancient craft tradition?

Published online by Cambridge University Press:  13 November 2019

Martine Regert*
Affiliation:
Université Côte d'Azur, CNRS, CEPAM, France
Isabelle Rodet-Belarbi
Affiliation:
Université Côte d'Azur, CNRS, CEPAM, France Inrap Méditerranée, Institut National de Recherche en Archéologie Préventive, 561 rue Etienne Lenoir, Km Delta, F –30 900, Nîmes, France
Arnaud Mazuy
Affiliation:
Université Côte d'Azur, CNRS, CEPAM, France
Gaëlle Le Dantec
Affiliation:
Université Côte d'Azur, CNRS, CEPAM, France
Rosa Maria Dessì
Affiliation:
Université Côte d'Azur, CNRS, CEPAM, France
Stéphanie Le Briz
Affiliation:
Université Côte d'Azur, CNRS, CEPAM, France
Auréade Henry
Affiliation:
Université Côte d'Azur, CNRS, CEPAM, France
Maxime Rageot
Affiliation:
Université Côte d'Azur, CNRS, CEPAM, France Department of Pre- and Protohistory, University of Tübingen, Burgsteige 11, Tübingen72070, Germany
*
*Author for correspondence (Email: [email protected])

Abstract

Birch-bark tar, used continuously in the territory of modern Europe from the Middle Palaeolithic to the Iron Age, is conspicuous by its absence in the archaeological record of the Roman period, suggesting its replacement by conifer-based products. The results of chemical analyses of residues on Roman hinges, however, now challenge this interpretation. The presence of birch-bark tar in most of the samples demonstrates the persistence of a long-established practice into the Roman period. Examined in relation to textual and environmental evidence, these results illuminate the transmission of technical knowledge and the development of long-distance trade networks associated with birch-bark tar.

Type
Research
Copyright
Copyright © Antiquity Publications Ltd, 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Binder, D., Bourgeois, G., Benoist, F. & Vitry, C.. 1990. Identification de brai de bouleau (Betula) dans le Néolithique de Giribaldi (Nice, France) par la spectrométrie de masse. Revue d'Archéométrie 14: 3742.CrossRefGoogle Scholar
Boëda, E., Bonilauri, S., Connan, J., Jarvie, D., Mercier, N., Tobey, M., Valladas, H. & Al Sakhek, H.. 2008. New evidence for significant use of bitumen in Middle Palaeolithic technical systems at Umm el Tlel (Syria) around 70 000 BP. Paléorient 34(2): 6783. https://doi.org/10.3406/paleo.2008.5257CrossRefGoogle Scholar
Bosquet, D., Dubois, N., Jadin, I. & Regert, M.. 2001. Identification de brai de bouleau sur quatre vases du site rubané de Fexhe-le-Haut-Clocher ‘Podrî l'Cortri’. Notae Praehistoricae 21: 119–27.Google Scholar
Cassen, S. & François, P.. 2009. Les coupes-à-socle de la Table des Marchands et du Néolithique ouest-européen. Projet de de recomposition d'un objet archéologique, in Cassen, S. (ed.) Autour de la table. Explorations archéologiques et discours savants sur des architectures néolithiques à Locmariaquer, Morbihan (Tables des Marchands et Grand Menhir): 568–85. Nantes: Laboratoire de recherches archéologiques, CNRS et Université de Nantes.Google Scholar
Centre d'Analyse et de Recherche en Art et Archéologie. 2011. Enduit sur charnières de portes—IIIèmes. Unpublished report, Centre d'Analyse et de Recherche en Art et Archéologie, Paris.Google Scholar
Charters, S., Evershed, R.P., Goad, L.J., Heron, C. & Blinkhorn, P.. 1993. Identification of an adhesive used to repair a Roman jar. Archaeometry 351: 91101. https://doi.org/10.1111/j.1475-4754.1993.tb01025.xCrossRefGoogle Scholar
Colombini, M.P., Giachi, G., Modugno, F., Pallecchi, P. & Ribechini, E.. 2003. The characterization of paints and waterproofing materials from the shipwrecks found at the archaeological site of the Etruscan and Roman harbour of Pisa (Italy). Archaeometry 45: 659–74. https://doi.org/10.1046/j.1475-4754.2003.00135.xCrossRefGoogle Scholar
Connan, J. 2012. Le bitume dans l'Antiquité. Arles: Editions Errance.Google Scholar
David, F. & Barbero, M..1995. De l'histoire du genre Betula dans les Alpes Françaises du Nord. Review of Palaeobotany and Palynology 89: 455–67. https://doi.org/10.1016/0034-6667(95)00006-6CrossRefGoogle Scholar
Delamarre, X. 2001. Dictionnaire de la langue gauloise. Une approche linguistique du vieux-celtique continental. Arles: Editions Errance.Google Scholar
Deschler-Erb, S. 1998. Römische Beinartefakte aus Augusta Raurica, Rohmaterail, Technologie, Typologie und Chronologie (27/1). Wien: Römermuseum.Google Scholar
de Waele, I. & Moreau, M.. 2012. Caractérisation par spectroscopie Infrarouge d'objets de tabletterie. Unpublished report. LASIR laboratoire, Université de Lille.Google Scholar
Dudd, S.N. & Evershed, R.P.. 1999. Unusual triterpenoid fatty acyl ester component of archaeological birch-bark tars. Tetrahedron Letters 40: 359–62. https://doi.org/10.1016/S0040-4039(98)02311-9CrossRefGoogle Scholar
Forbes, R.J. 1936. The nomenclature of bitumen petroleum tar and allied products in antiquity. Mnemosyne 4: 6777.Google Scholar
Grünberg, J.M. 2002. Middle Palaeolithic birch-bark pitch. Antiquity 76: 1516. https://doi.org/10.1017/S0003598X00089638CrossRefGoogle Scholar
Karg, S., Hansen, U.L., Waldén, A.M., Glastrup, J., Pedersen, H.A. & Sonne Nielsen, F.O.. 2014. Vegetal grave goods in a female burial on Bornholm (Denmark) from the Late Roman Iron Age period interpreted in a comparative European perspective. Danish Journal of Archaeology 3: 5260. https://doi.org/10.1080/21662282.2014.994280CrossRefGoogle Scholar
Kimble, B.J., Maxwell, J.R., Philp, R.P. & Eglinton, G.. 1974. Identification of steranes and triterpanes in geolipid extracts by high-resolution gas chromatography and mass spectrometry. Chemical Geology 14: 173–98. https://doi.org/10.1016/0009-2541(74)90127-2CrossRefGoogle Scholar
Lambert, P.-Y. 2003. La langue gauloise. Description linguistique, commentaire d'inscriptions choisies. Arles: Editions Errance.Google Scholar
Lucquin, A., March, R.J. & Cassen, S.. 2007. Analysis of adhering organic residue of two ‘coupes-à-socles’ from the Neolithic funerary site ‘La Hougue Bie’ in Jersey: evidences of birch bark tar utilisation. Journal of Archaeological Science 34: 704710. https://doi.org/10.1016/j.jas.2006.07.006CrossRefGoogle Scholar
Mazuy, A., Rodet-Belarbi, I., Rageot, M. & Regert, M.. 2014. Du brai de bouleau sur des éléments de charnière gallo-romains à Fréjus (Var, France). Instrumentum 40: 2528.Google Scholar
McCormick, M., Büntgen, U., Cane, M.A., Cook, E.R., Harper, K., Huybers, P., Litt, T., Manning, S. W., Mayewski, P.A., More, A.F.M., Nicolussi, K. & Tegel, W.. 2012. Climate change during and after the Roman Empire: reconstructing the past from scientific and historical evidence. Journal of Interdisciplinary History 43: 169220. https://doi.org/10.1162/JINH_a_00379CrossRefGoogle Scholar
Mirabaud, S., Pétrequin, A.-M., Pétrequin, P. & Regert, M.. 2015. Système de production des adhésifs exploités à Clairvaux VII et Clairvaux XIV, in Pétrequin, P. & Pétrequin, A.-M. (ed.) Clairvaux et le ‘Néolithique Moyen Bourguignon’: 1001–.21. Besançon: Presses universitaires de Franche-Comté.Google Scholar
Mitkidou, S., Dimitrakoudi, E., Urem-Kotsou, D., Papadopoulou, D., Kotsakis, K., Stratis, J.A. & Stephanidou-Stephanatou, I.. 2008. Organic residue analysis of Neolithic pottery from north Greece. Microchimica Acta 160: 493–98. https://doi.org/10.1007/s00604-007-0811-2CrossRefGoogle Scholar
Modugno, F. & Ribechini, E.. 2009. GC/MS in the characterisation of resinous materials, in Colombini, M.P. & Modugno, F. (ed.) Organic mass spectrometry in art and archaeology: 215–35. Hoboken (NJ): Wiley-Blackwell. https://doi.org/10.1002/9780470741917.ch8CrossRefGoogle Scholar
Morandi, L.F., Porta, S.N. & Ribechini, E.. 2018. Evidence for birch-bark tar use as an adhesive and decorative element in Early Iron Age central Italy: technological and socio-economic implications. Archaeometry 60: 1077–87. https://doi.org/10.1111/arcm.12362CrossRefGoogle Scholar
Nordby, C. 2009. Continuity or change? The use and function of birch-bark tar in Norwegian Early Iron Age grave contexts, in Ambers, J., Saunders, D. & Harrison, L. (ed.) Holding it all together: ancient and modern approaches to joining, repair and consolidation: 5460. London: Archetype.Google Scholar
Orengo, H.A., Palet, J.M., Ejarque, A., Miras, Y. & Riera, S.. 2013. Pitch production during the Roman period: an intensive mountain industry for a globalised economy? Antiquity 87: 802–14. https://doi.org/10.1017/S0003598X00049474CrossRefGoogle Scholar
Rageot, M., Pêche-Quilichini, K., Py, V., Filippi, J.-J., Fernandez, X. & Regert, M.. 2016. Exploitation of beehive products, plant exudates and tars in Corsica during the early Iron Age. Archaeometry 58: 315–32. https://doi.org/10.1111/arcm.12172CrossRefGoogle Scholar
Rageot, M., Théry-Parisot, I., Beyries, S., Lepère, C., Carré, A., Mazuy, A., Filippi, J.-J., Fernandez, X., Binder, D. & Regert, M.. 2019. Birch-bark tar production: experimental and biomolecular approaches of a common and widely used prehistoric adhesive. Journal of Archaeological Method and Theory 26: 276–31. https://doi.org/10.1007/s10816-018-9372-4CrossRefGoogle Scholar
Rameau, J.C., Mansion, D. & Dumé, G.. 1989. Flore forestière française, guide écologique illustré. Paris: Institut pour le Développement Forestier.Google Scholar
Regert, M. 2009. Direct mass spectrometry to characterise wax and lipid materials, in Colombini, M.P. & Modugno, F. (ed.) Organic mass spectrometry in art and archaeology: 97129. Hoboken (NJ): Wiley-Blackwell. https://doi.org/10.1002/9780470741917.ch4CrossRefGoogle Scholar
Regert, M. & Rolando, C.. 2002. Identification of archaeological adhesives using direct inlet electron ionization mass spectrometry. Analytical Chemistry 74: 965–75. https://doi.org/10.1021/ac0155862CrossRefGoogle ScholarPubMed
Regert, M., Delacotte, J.-M., Menu, M., Pétrequin, P. & Rolando, C.. 1998. Identification of Neolithic hafting adhesives from two lake dwellings at Chalain (Jura, France). Ancient Biomolecules 2: 8196.Google Scholar
Regert, M., Garnier, N., Binder, D. & Pétrequin, P.. 2000. Les adhésifs néolithiques: quels matériaux utilisés, quelles techniques de production dans quel contexte social? in Pétrequin, P. (ed.) Arts du feu et productions artisanales: XXe Rencontres internationales d'archéologie et d'histoire d'Antibes: actes des rencontres, 21-22-23 Octobre 1999: 586604. Antibes: APDCA.Google Scholar
Regert, M., Colinart, S., Degrand, L. & Decavallas, O.. 2001. Chemical alteration and use of beeswax through time: accelerated ageing tests and analysis of archaeological samples from various environmental contexts. Archaeometry 43: 549–69. https://doi.org/10.1111/1475-4754.00036CrossRefGoogle Scholar
Ribechini, E., Modugno, F., Colombini, M.P. & Evershed, R.P.. 2008. Gas chromatographic and mass spectrometric investigations of organic residues from Roman glass unguentaria. Journal of Chromatography A 1183: 158–69. https://doi.org/10.1016/j.chroma.2007.12.090CrossRefGoogle Scholar
Ribechini, E., Bacchiocchi, M., Deviese, T. & Colombini, M.P.. 2011. Analytical pyrolysis with in situ thermally assisted derivatisation, Py(HMDS)-GC/MS, for the chemical characterization of archaeological birch-bark tar. Journal of Analytical and Applied Pyrolysis 91: 219–23. https://doi.org/10.1016/j.jaap.2011.02.011CrossRefGoogle Scholar
Robinson, N., Evershed, R.P., Higgs, W.J., Jerman, K. & Eglinton, G.. 1987. Proof of a pine wood origin from the Tudor (Mary Rose) and Etruscan shipwrecks: application of analytical chemistry in archaeology. Analyst 112: 637–44. https://doi.org/10.1039/an9871200637CrossRefGoogle Scholar
Rodet-Belarbi, I. 2018. La transformation des matières dures d'origine animale en Gaule romaine: ateliers urbains et artisans itinérants. Artefact Techniques, Histoire et Sciences Humaines 7: 6577. https://doi.org/10.4000/artefact.1086Google Scholar
Roffet-Salque, M. et al. 2015. Widespread exploitation of the honeybee by Early Neolithic farmers. Nature 7577: 226–30.CrossRefGoogle Scholar
Stern, B., Heron, C., Tellefsen, T. & Serpico, M.. 2008. New investigations into the Uluburun resin cargo. Journal of Archaeological Science 35: 21882203. https://doi.org/10.1016/j.jas.2008.02.004CrossRefGoogle Scholar
Vanden Berghe, I. & Bos, M. Van. 2013. Non destructive and micro destructive investigation of red and black materials on the Xanten bone finds, in Jung, P. (ed.) Die Römischen Beinbartefakte aus dem Gebiet der Colonia Ulpia Traiana (Xanten) (Xantener Berichte Band 26): 5156. Darmstadt & Mainz: Philipp von Zabern.Google Scholar
Walter, H. & Avenas, P.. 2017. La majestueuse histoire du nom des arbres. Paris: Robert Laffont.Google Scholar
von Wartburg, W. 1922–1967. Französisches Etymologisches Wörterbuch: eine Darstellung des galloromanischen Sprachschatzes. Basel: Zbinden.Google Scholar
Supplementary material: PDF

Regert et al. supplementary material

Regert et al. supplementary material

Download Regert et al. supplementary material(PDF)
PDF 567.1 KB