Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-18T21:51:34.106Z Has data issue: false hasContentIssue false

The Wilkes Land Anomaly revisited

Published online by Cambridge University Press:  14 January 2015

John G. Weihaupt
Affiliation:
Department of Geology, University of Colorado Denver, Denver, CO 80217-3364, USA
Frans G. Van Der Hoeven
Affiliation:
Department of Geophysics, Delft Technical University, Delft, The Netherlands
Frederick B. Chambers*
Affiliation:
Department of Geography and Environmental Sciences, University of Colorado Denver, Denver, CO 80217-3364, USA
Claude Lorius
Affiliation:
Laboratoire de Glaciologie et Geophysique de Environment, Grenoble, France
John W. Wyckoff
Affiliation:
Department of Geography and Environmental Sciences, University of Colorado Denver, Denver, CO 80217-3364, USA
Devin Castendyk
Affiliation:
Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80309-0450, USA

Abstract

The Wilkes Land Gravity Anomaly, first reported in 1959–60, is located in northern Victoria Land in the Pacific Ocean sector of East Antarctica, 1400 km west of the Ross Sea and centred at 70°00'S-140°00'E. Initially described on the basis of ground-based seismic and gravity survey, and estimated at the time to have a diameter of 243 km, the original data are now supplemented by data from airborne radiosound survey, airborne gravity survey, airborne magnetic survey and satellite remote sensing. These new data enable us to expand upon the original data, and reveal that the structure has a diameter of some 510 km, is accompanied by ice streams and a chaotically disturbed region of the continental ice sheet, has a subglacial topographical relief of ≥1500 m, and exhibits a negative free air gravity anomaly associated with a larger central positive free air gravity anomaly. The feature has been described as a volcanic structure, an igneous intrusion, an ancient igneous diapir, a subglacial sedimentary basin, a glacially eroded subglacial valley, a tectonic feature and a meteorite impact crater. We re-examine the feature on the basis of these collective data, with emphasis on the free air gravity anomaly signs, magnitudes and patterns, magnetic signature magnitudes and patterns, and the size, shape, dimensions and morphology of the structure. This enhanced view adds substantially to the original description provided at the time of discovery, and suggests several explanations for the origin of the Wilkes Land Anomaly. However, the importance of this feature lies not only in determining its origin but by the fact that this part of the Wilkes Subglacial Basin is one of the most prominent regional negative geoid and associated gravity anomalies of the Antarctic continent.

Type
Earth Sciences
Copyright
© Antarctic Science Ltd 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Dr John (Jack) Weihaupt passed away in September 2014. This article is dedicated to his research and his memory.

References

Behrendt, J.C., Flinn, C.A., Blankenship, D. & Bell, R.E. 1998. Aeromagnetic evidence for a volcanic caldera (?) complex beneath the divide of the West Antarctic Ice Sheet. Geophysical Research Letters, 25, 43854388.Google Scholar
Bentley, C.R. 1979. No giant meteorite crater in Wilkes Land, Antarctica. Journal of Geophysical Research, 84, 56815682.Google Scholar
Bouman, J., Floberghagen, R. & Rummel, R. 2013. More than 50 years of progress in satellite gravimetery. Eos, Transactions American Geophysical Union, 94, 269270.Google Scholar
Bozzo, E. & Ferraccioli, F. 2007. The Italian-British Antarctic geophysical and geological survey in northern Victoria Land 2005–06 – towards the International Polar Year 2007–08. Terra Antarctica Report 13. Siena: Terra Antarctica publication, 110 pp.Google Scholar
Collins, G.S., Melosh, H.J. & Marcus, R.A. 2005. Earth impact effects program: a web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteoritics & Planetary Science, 40, 817840.CrossRefGoogle Scholar
Ferraccioli, F., Coren, F., Bozzo, E., Zanolla, C., Gandolfi, S., Tabacco, I. & Frezotti, I. 2001. Rifted (?) crust at the East Antarctic craton margin: gravity and magnetic interpretation along a traverse cross the Wilkes Subglacial Basin region. Earth and Planetary Science Letters, 192, 407421.Google Scholar
Fialko, Y. & Pearse, J. 2012. Sombrero uplift above the Altiplano-Puna magma body: evidence of a ballooning mid-crustal diapir. Science, 338, 250252.Google Scholar
Fretwell, P., Pritchard, H.D., Vaughan, D.G. & 58 others . 2013. BEDMAP2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere, 7, 10.5194/tc-7-375-2013.Google Scholar
Galadi-Enriquez, E., Galindo-Zaldivar, J., Simancas, F. & Exposito, I. 2003. Diapiric emplacement in the upper crust of a granitic body: the La Bazana granite (SW Spain). Tectonophysics, 361, 8396.Google Scholar
Goodge, J.W. & Fanning, C.M. 2010. Composition and age of the East Antarctic Shield in eastern Wilkes Land determined by proxy from Oligocene-Pleistocene glaciomarine sediment and Beacon Supergroup sandstones, Antarctica. Geological Society of America Bulletin, 122, 10.1130/B30079.1.Google Scholar
Grieve, R.A.F. 2006. Impact structures of Canada. GEOtext no. 5. St Johns: Geological Association of Canada, 210 pp.Google Scholar
Innes, M.J.S. 1961. The use of gravity methods to study the underground structure and impact energy of meteorite craters. Journal of Geophysical Research, 66, 22252239.Google Scholar
Jezek, K.C. 2002. RADARSAT-1 Antarctic mapping project: change-detection and surface velocity campaign. Annals of Glaciology, 34, 263268.CrossRefGoogle Scholar
Jordan, T.A., Ferraccioli, F., Armadillo, E. & Bozzo, E. 2014. Crustal architecture of the Wilkes Subglacial Basin in East Antarctica, as revealed from airborne gravity data. Tectonophysics, 585, 10.1016/j.tecto.2012.06.041.Google Scholar
Kinsland, G.L., Pope, K.O., Cardador, M.H., Cooper, G.R.J., Cowan, D.R., Kobrick, M. & Sanchez, G. 2005. Topography over the Chicxulub impact crater from shuttle radar topographic mission data. Geological Society of America Special Papers, No. 384, 141146.Google Scholar
LeMasurier, W.E. & Thomson, J.W. 1990. Preface. Antarctic Research Series, 48, 10.1029/AR048.CrossRefGoogle Scholar
Lythe, M.B., Vaughan, D.G. & the BEDMAP-Consortium . 2001. BEDMAP – bed topography of the Antarctic. Cambridge: British Antarctic Survey.Google Scholar
Mayewski, P.A. 1976. Past levels and present state of the northern Victoria Land glaciers. Antarctic Journal of the United States, 11(4), 277279.Google Scholar
Melosh, H.J. 1989. Impact cratering: a geologic process. New York, NY: Oxford University Press, 1245.Google Scholar
Melosh, H.J., Freed, A.M., Johnson, B.C., Blair, D.M., Andrews-Hanna, J.C., Neumann, G.A., Phillips, R.J., Smith, D.E., Solomon, S.C., Wieczorek, M.A. & Zuber, M.T. 2013. The origin of Lunar Mascon Basins. Science, 340, 15521555.Google Scholar
Morgan, J., Warner, M., Brittan, J., Buffler, R., Camargo, A., Christeson, G., Denton, P., Hildebrand, A., Hobbs, R., Macintyre, H., Mackenzie, G., Maguire, P., Marin, L., Nakamura, Y., Pilkington, M., Sharpton, V., Snyder, D., Suarez, G. & Trejo, A. 1997. Size and morphology of the Chicxulub impact crater. Nature, 390, 472476.CrossRefGoogle Scholar
Pike, R.J. 1974. Depth/diameter relations of fresh lunar craters: revision from spacecraft data. Geophysical Research Letters, 1, 291294.Google Scholar
Plado, J., Pesonen, L.J. & Puura, V. 1999. Effect of erosion on gravity and magnetic signatures of complex impact structures: geophysical modeling and applications. Geological Society of America Special Papers, No. 339, 229240.Google Scholar
Rebolledo-Vieyra, M., Urrutia-Fucugauchi, J. & Lỏpez-Loera, H. 2010. Aeromagnetic anomalies and structural model of the Chicxulub multiring impact crater, Yucatan, Mexico. Revista Mexicana de Ciencias Geológiscas, 27, 185195.Google Scholar
Reigber, C., Balmino, G., Schwintzer, P., Biancale, R., Bode, A., Lemoine, J.M., König, R., Loyer, S., Neumayer, H., Marty, J.C., Barthelmes, F., Perosanz, F. & Zhu, S.Y. 2002. A high-quality global gravity field model from CHAMP GPS tracking data and accelerometer (EIGEN-IS). Geophysical Research Letters, 29, 10.1029/2002GL015064.Google Scholar
Reid, A.J. & Martin, H. 2012. Mesoarchean to Mesoproterozoic evolution of the southern Gawler Craton, South Australia. Episodes, 35, 216225.CrossRefGoogle Scholar
Rouillon, G. 1960. Anomalies de la pesanteur et profil de la calotte glaciaire Antarctique en Terre Adélie. Comptes Rendus de l’Academie des Sciences, 251, 762764.Google Scholar
Schmidt, R.A. 1962. Australites in Antarctica. Science, 138, 443444.Google Scholar
Sharpton, V.L., Burke, K., Camargozanoguera, A., Hall, S.A., Lee, D.S., Marin, L.E., Suarez-Reynoso, G., Quezandamuneton, J.M., Spudis, P.D. & Urrutiafucugauchi, J. 1993. Chicxulub multiring impact basin: size and other characteristics derived from gravity analysis. Science, 261, 15641567.Google Scholar
Steed, R.H.N. & Drewry, D.J. 1982. Radio echo sounding investigations of Wilkes Land, Antarctica. In Craddock, C., ed. Antarctic geoscience. Madison, WI: University of Wisconsin Press, 969975.Google Scholar
Ugalde, H.A., Artemieva, N. & Milkereit, B. 2005. Magnetization in impact structures – constraints from numerical modeling and petrophysics. Geological Society of America Special Papers, No. 384, 2542.Google Scholar
Walsh, A.M., Holloway, K.E., Habdas, P. & de Bruyn, J.R. 2003. Morphology and scaling of impact craters in granular media. Physical Review Letters, 91, 10.1103/PhysRevLett.91.104301.Google Scholar
Weihaupt, J.G. 1961. Geophysical studies in Victoria Land, Antarctica. Research report series, No. 1. Madison, WI: Geophysical and Polar Research Center, 1123.Google Scholar
Weihaupt, J.G. 1976. The Wilkes Land Anomaly: evidence for a possible hypervelocity impact crater. Journal of Geophysical Research, 81, 56515663.CrossRefGoogle Scholar
Weihaupt, J.G., Rice, A. & van der Hoeven, F.G. 2010. Gravity anomalies of the Antarctic lithosphere. Lithosphere, 2, 454461.Google Scholar
Weihaupt, J.G., Stuart, A.W., van der Hoeven, F.G., Lorius, C. & Smith, W.M. 2012. Impossible journey: the story of the Victoria Land Traverse 1959–1960, Antarctica. Geological Society of America Special Papers, No. 488, 1136.Google Scholar
Weihaupt, J.G., van der Hoeven, F.G., Lorius, C. & Chambers, F.B. 2014a. Origin(s) of Antarctica’s Wilkes Subglacial Basin. Antarctic Science, 26, 10.1017/S0954102013000746.Google Scholar
Weihaupt, J.G., Chambers, F.B., van der Hoeven, F.G. & Lorius, C. 2014b. Impact craterform morphology: the origin of the Mertz and Ninnis glaciers, Antarctica. Geomorphology, 209, 10.1016/j.geomorph.2013.11.031.Google Scholar
Whitehead, J., Grieve, R.A.F., Garvin, J.B. & Spray, J.G. 2010. The effects of crater degradation and target differences on the morphologies of Martian complex craters. Geological Society of America Special Papers, No. 465, 6780.Google Scholar