Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-12-01T00:12:31.809Z Has data issue: false hasContentIssue false

Vertical structure of bi-layered microbial mats from Byers Peninsula, Maritime Antarctica

Published online by Cambridge University Press:  20 March 2013

Carlos Rochera
Affiliation:
Instituto Cavanilles de Biodiversidad y Biología Evolutiva y Departamento de Microbiología y Ecología, Edificio de Investigación, Campus de Burjassot, Universitat de Valencia, 46100 Burjassot, Spain
Juan Antonio Villaescusa
Affiliation:
Instituto Cavanilles de Biodiversidad y Biología Evolutiva y Departamento de Microbiología y Ecología, Edificio de Investigación, Campus de Burjassot, Universitat de Valencia, 46100 Burjassot, Spain
David Velázquez
Affiliation:
Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin, 2, 28049 Madrid, Spain
Eduardo Fernández-Valiente
Affiliation:
Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin, 2, 28049 Madrid, Spain
Antonio Quesada
Affiliation:
Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin, 2, 28049 Madrid, Spain
Antonio Camacho*
Affiliation:
Instituto Cavanilles de Biodiversidad y Biología Evolutiva y Departamento de Microbiología y Ecología, Edificio de Investigación, Campus de Burjassot, Universitat de Valencia, 46100 Burjassot, Spain

Abstract

A summer study of the vertical structure of bi-layered microbial mats was carried out on Byers Peninsula (Livingston Island, South Shetland Islands). These benthic communities had a common basic structure that consisted of two distinct layers differing in composition, morphology and colour. Our sampling focused on mats showing more layering, which thrived over moist soils and at the bottom of ponds. The photosynthetic pigments analysis performed by high-performance liquid chromatography demonstrated a major occurrence of cyanobacteria and diatoms on these mats, the former being more abundant in relative terms on the surface and composed by morphospecies grouping into orders Oscillatoriales, Nostocales and Chroococcales. The areal chlorophyll a concentrations were slightly higher in the deeper layer although not significantly. Our microscopic and chemical analyses showed that non-active biomass accumulates at the surface. Hence, the upper layers showed the sheath pigment scytonemin and higher amounts of exopolysaccharides, as a strategy to cope with environmental stress. On the other hand, the basal layer was composed of more active photosynthetic microbiota, which also revealed a more balanced stoichiometry. Here we exemplify how environmental stresses are potentially overcome by physiological mechanisms developed by microbial mats which also shape their vertical structure.

Type
Research Articles
Copyright
Copyright © Antarctic Science Ltd 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bonilla, S., Rautio, M.Vincent, W.F. 2009. Phytoplankton and phytobenthos pigment strategies: implications for algal survival in the changing Arctic. Polar Biology, 32, 12931303.CrossRefGoogle Scholar
Bradford, M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry, 72, 248259.CrossRefGoogle Scholar
Broady, P.A.Kibblewhite, A.L. 1991. Morphological characterization of Oscillatoriales (Cyanobacteria) from Ross Island and southern Victoria Land, Antarctica. Antarctic Science, 3, 3545.CrossRefGoogle Scholar
Castenholz, R.W.Garcia-Pichel, F. 2000. Cyanobacterial responses to UV-radiation. In Whitton, B.A. & Potts, M., eds. Ecology of cyanobacteria: their diversity in time and space. Dordrecht: Kluwer, 591611.Google Scholar
Decho, A.W., Kawaguchi, T., Allison, M.A., Louchard, E.M., Reid, R.P., Stephens, F.C., Voss, K.J., Wheatcroft, R.A.Taylor, B.B. 2003. Sediment properties influencing upwelling spectral reflectance signatures: the ‘‘biofilm gel effect’’. Limnology and Oceanography, 48, 431443.CrossRefGoogle Scholar
De Los Ríos, A., Ascaso, C., Wierzchos, J., Fernández-Valiente, E.Quesada, A. 2004. Microstructural characterization of cyanobacterial mats from the McMurdo Ice Shelf, Antarctica. Applied and Environmental Microbiology, 70, 569580.CrossRefGoogle ScholarPubMed
Fernández-Valiente, E., Camacho, A., Rochera, C., Rico, E., Vincent, W.F.Quesada, A. 2007. Community structure and physiological characterization of microbial mats in Byers Peninsula, Livingston Island (South Shetland Islands, Antarctica). FEMS Microbiology Ecology, 59, 377385.CrossRefGoogle Scholar
Fleming, E.D.Castenholz, R.W. 2008. Effects of nitrogen source on the synthesis of the UV-screening compound, scytonemin, in the cyanobacterium Nostoc punctiforme PCC 73102. FEMS Microbiology Ecology, 63, 301308.CrossRefGoogle ScholarPubMed
Garcia-Pichel, F.Castenholz, R.W. 1991. Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. Journal of Phycology, 27, 395409.CrossRefGoogle Scholar
Garcia-Pichel, F., Sherry, N.D.Castenholz, R.W. 1992. Evidence for an ultraviolet sunscreen role of the extracellular pigment scytonemin in the terrestrial cyanobacterium Chlorogloeopsis sp. Photochemistry and Photobiology, 56, 1723.CrossRefGoogle ScholarPubMed
Hawes, I.Howard-Williams, C. 1998. Primary production processes in streams of the McMurdo Dry Valleys, Antarctica. Antarctic Research Series, 72, 129140.Google Scholar
Herbert, D., Phipps, P.J.Strange, R.E. 1971. Chemical analysis of microbial cells. In Norris, J.R.&Ribbons, D.W., eds. Methods in microbiology, vol. 5B. London: Academic Press, 209344.Google Scholar
Jungblut, A.D., Lovejoy, C.Vincent, W.F. 2010. Global distribution of cyanobacterial ecotypes in the cold biosphere. The ISME Journal, 4, 191202.CrossRefGoogle ScholarPubMed
Kirkwood, A.E., Nalewajko, C.Fulthorpe, R.R. 2006. The effects of cyanobacterial exudates on bacterial growth and biodegradation of organic contaminants. Microbial Ecology, 51, 412.CrossRefGoogle ScholarPubMed
Kleinteich, J., Wood, S.A., Küpper, F.C., Camacho, A., Quesada, A., Frickey, T.Dietrich, D.R. 2012. Temperature-related changes in polar cyanobacterial mat diversity and toxin production. Nature Climate Change, 10.1038/NCLIMATE1418.CrossRefGoogle Scholar
Komarek, J.Anagnostidis, K. 1999. Cyanoprokaryota 1. Teil: Chroococcales. In Ettl, H., Gerloff, F., Heynig, H.&Mollenhauer, D., eds. Süßwasserflora von Mitteleuropa, Band 19/1. Munich: Elsevier, 548 pp.Google Scholar
Komarek, J.Anagnostidis, K. 2005. Cyanoprokaryota 2. Teil: Oscillatoriales. In Büdel, B., Krienitz, L., Gartner, G.&Schagel, M., eds. Süßwasserflora von Mitteleuropa, Band 19/2. Munich: Elsevier, 759 pp.Google Scholar
Krammer, K.Lange-Bertalot, H. 1986. Bacillariophyceae 1. Teil: Naviculaceae. In Ettl, H., Gerloff, F., Heynig, H.&Mollenhauer, D., eds. Süßwasserflora von Mitteleuropa, Band 2/1. Stuttgart: Fischer, 876 pp.Google Scholar
Krammer, K.Lange-Bertalot, H. 1988. Bacillariophyceae 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In Ettl, H., Gerloff, F., Heynig, H.&Mollenhauer, D., eds. Süßwasserflora von Mitteleuropa, Band 2/2. Stuttgart: Fischer, 596 pp.Google Scholar
Krammer, K.Lange-Bertalot, H. 1991a. Bacillariophyceae 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In Ettl, H., Gerloff, F., Heynig, H.&Mollenhauer, D., eds. Süßwasserflora von Mitteleuropa, Band 2/3. Stuttgart: Fischer, 576 pp.Google Scholar
Krammer, K.Lange-Bertalot, H. 1991b. Bacillariophyceae 4. Teil: Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema, Gesamtliteraturverzeichnis. In Ettl, H., Gärtner, G., Gerloff, F., Heynig, H.&Mollenhauer, D., eds. Süßwasserflora von Mitteleuropa, Band 2/4. Stuttgart: Fischer, 437 pp.Google Scholar
Mohamed, H.E., van de Meene, A.M.L., Roberson, R.W.Vermaas, W.F.J. 2005. Myxoxanthophyll is required for normal cell wall structure and thylakoid organization in the Cyanobacterium Synechocystis sp. strain PCC 6803. Journal of Bacteriology, 187, 68836892.CrossRefGoogle ScholarPubMed
Mueller, D.R., Vincent, W.F., Bonilla, S.Laurion, I. 2005. Extremotrophs, extremophiles and broadband pigmentation strategies in a high arctic ice shelf ecosystem. FEMS Microbiology Ecology, 53, 7387.CrossRefGoogle Scholar
Otero, A.Vincenzini, M. 2004. Nostoc (Cyanopphyceae) goes nude: extracellular polyshacarides serve a sink for reducing power under unbalanced C/N metabolism. Journal of Phycology, 40, 7481.CrossRefGoogle Scholar
Paerl, H.W., Pinckney, J.L.Steppe, T.F. 2000. Cyanobacterial-bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments. Environmental Microbiology, 2, 1126.CrossRefGoogle ScholarPubMed
Pinckney, J.L., Millie, D.F., Howe, K.E., Paerl, H.W.Hurley, J.P. 1996. Flow scintillation counting of 14C-labeled microalgal photosynthetic pigments. Journal of Plankton Research, 18, 18671880.CrossRefGoogle Scholar
Quesada, A.Vincent, W.F. 1997. Strategies of adaptation by Antarctic cyanobacteria to ultraviolet radiation. European Journal of Phycology, 32, 335342.CrossRefGoogle Scholar
Quesada, A., Vincent, W.F.Lean, D.S. 1999. Community and pigment structure of Arctic cyanobacterial assemblages. Occurrence and distribution of ultraviolet absorbing compounds. FEMS Microbiology Ecology, 28, 315323.CrossRefGoogle Scholar
Quesada, A., Fernández-Valiente, E., Hawes, I.Howard-Williams, C. 2008. Benthic primary production in polar lakes and rivers. In Vincent, W.F.&Laybourn-Parry, J., eds. Polar lakes and rivers: limology of Arctic and Antarctic aquatic ecosystems. Oxford: Oxford University Press, 179196.CrossRefGoogle Scholar
Rochera, C., Toro, M., Rico, E., Fernández-Valiente, E., Villaescusa, J.A., Picazo, A., Quesada, A.Camacho, A. 2013. Structure of planktonic microbial communities along a trophic gradient in lakes of Byers Peninsula, South Shetland Islands. Antarctic Science, 25, 10.1017/S0954102012000971.CrossRefGoogle Scholar
Sutherland, I.W. 2001. Biofilm exopolysaccharides: a strong and sticky framework. Microbiology, 147, 39.CrossRefGoogle Scholar
Toro, M., Camacho, A., Rochera, C., Rico, E., Bañón, M., Fernández-Valiente, E., Marco, E., Justel, A., Avendaño, M.C., Ariosa, Y., Vincent, W.F.Quesada, A. 2007. Limnological characteristics of the freshwater ecosystems of Byers Peninsula, Livingston Island, in Maritime Antarctica. Polar Biology, 30, 635649.CrossRefGoogle Scholar
Velázquez, D., Rochera, C., Camacho, A.Quesada, A. 2011. Temperature effects on carbon and nitrogen metabolism in some Maritime Antarctic freshwater phototrophic communities. Polar Biology, 34, 10451055.CrossRefGoogle Scholar
Vincent, W.F.Howard-Williams, C. 1989. Microbial communities in southern Victoria Land streams (Antarctica) II. The effects of low temperature. Hydrobiologia, 172, 3949.CrossRefGoogle Scholar