Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-19T00:35:15.240Z Has data issue: false hasContentIssue false

Terrestrial palynomorphs of the Cenozoic Pagodroma Group, northern Prince Charles Mountains, East Antarctica

Published online by Cambridge University Press:  14 May 2013

L.J. Wei*
Affiliation:
Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
J.I. Raine
Affiliation:
GNS Science, PO Box 30368, Lower Hutt 6009, New Zealand
X.H. Liu
Affiliation:
Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China

Abstract

Terrestrial palynomorphs from the glaciomarine Pagodroma Group provide the first stratigraphically-constrained record of Cenozoic terrestrial vegetation for the northern Prince Charles Mountains, East Antarctica. In general, contemporaneous spores and pollen are extremely sparse, but palynological assemblages of the late middle–late Miocene Fisher Bench Formation and Battye Glacier Formation have relatively more abundant Cenozoic spores and pollen compared with those of the Oligocene Mount Johnston Formation and the Pliocene–early Pleistocene Bardin Bluffs Formation. Spore-pollen assemblages from the Battye Glacier Formation and the Fisher Bench Formation are dominated by Chenopodipollis, with a few other accessory angiosperm and podocarp pollen, pteridophyte and bryophyte spores, and algal cysts, reflecting a low diversity herb-tundra vegetation and a climate similar to the present-day cool to cold sub-Antarctic regions. Reworked Permian–Triassic miospores in Amery oasis (unofficial name) sediments probably indicate local provenance from the Amery Group but Jurassic–Cretaceous and possible early Cenozoic miospores reflect an unknown source.

Type
Earth Sciences
Copyright
Copyright © Antarctic Science Ltd 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashworth, A.C. Cantrill, D.J. 2004. Neogene vegetation of the Meyer Desert Formation (Sirius Group) Transantarctic Mountains, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 213, 6582.Google Scholar
Askin, R.A. 2000. Spores and pollen from the McMurdo Sound erratics, Antarctica. Antarctic Research Series, 76, 161181.CrossRefGoogle Scholar
Askin, R.A. Markgraf, M. 1986. Palynomorphs from the Sirius Formation, Dominion Range, Antarctica. Antarctic Journal of the United States, 21 (5), 3435.Google Scholar
Askin, R.A. Raine, J.I. 2000. Oligocene and early Miocene terrestrial palynology of Cape Roberts drillhole CRP-2/2A, Victoria Land Basin, Antarctica. Terra Antartica, 7, 493501.Google Scholar
Bardin, V.I. Belevich, A.M. 1985. Early glacial deposits in the Prince Charles Mountains. Antarktika doklady komisii, 24, 7681. [In Russian].Google Scholar
Bardin, V.I. Chepaljiga, A.L. 1989. Early glacial deposits fauna on the bank of the Beaver Lake (East Antarctica, Prince Charles Mountains). Antarktika doklady komisii, 28, 3538.Google Scholar
Cape Roberts Science Team. 1998. Miocene strata in CRP-1, Cape Roberts Project, Antarctica. Terra Antartica, 5, 63124.Google Scholar
Fleming, R.F. Barron, J.A. 1996. Evidence of Pliocene Nothofagus in Antarctica from Pliocene marine sedimentary deposits (DSDP Site 274). Marine Micropalaeontology, 27, 227236.Google Scholar
Florindo, F. Siegert, M., eds. 2009. Antarctic climate evolution. Amsterdam: Elsevier, 606 pp.Google Scholar
Greene, S.W. 1964. Plants of the land. In Priestley, R., Adie, R.J. , Robin, G. de Q., eds. Antarctic research: a review of British scientific achievement in Antarctica. London: Butterworths, 240253.Google Scholar
Hambrey, M.J. McKelvey, B. 2000a. Major Neogene fluctuations of the East Antarctic Ice Sheet: stratigraphic evidence from the Lambert Glacier region. Geology, 28, 887890.Google Scholar
Hambrey, M.J. McKelvey, B. 2000b. Neogene fjordal sedimentation on the western margin of the Lambert Graben, East Antarctica. Sedimentology, 47, 577607.Google Scholar
Hannah, M.J. 2006. The palynology of ODP site 1165, Prydz Bay, East Antarctica: a record of Miocene glacial advance and retreat. Palaeogeography, Palaeoclimatology, Palaeoecology, 231, 120133.Google Scholar
Harland, R., Pudsey, C.J., Howe, J.A. Fitzpatrick, M.E.J. 1998. Recent dinoflagellate cysts in a transect from the Falkland Trough to the Weddell Sea, Antarctica. Palaeontology, 41, 10931131.Google Scholar
Higham, M., Craven, M., Ruddell, A. Allison, I. 1997. Snow-accumulation distribution in the interior of the Lambert Glacier basin, Antarctica. Annals of Glaciology, 25, 412417.Google Scholar
Hill, R.S. Truswell, E.M. 1993. Nothofagus fossils in the Sirius Group, Transantarctic Mountains. Antarctic Research Series, 60, 6773.Google Scholar
Laiba, A.A. Pushina, Z.V. 1997. Cenozoic glacial-marine sediments from the Fisher Massif (Prince Charles Mountains). In Ricci, C.A., eds. The Antarctic region: geological evolution and processes. Terra Antartica, 4, 977984.Google Scholar
Lewis, A.R., Marchant, D.R., Ashworth, A.C., Hedenas, L., Hemming, S.R., Johnson, J.V., Leng, M.L., Machlus, M.L., Newton, A.E., Raine, J.I., Willenbring, J.K., Williams, M. Wolfe, A.P. 2008. Mid-Miocene cooling and the extinction of tundra in continental Antarctica. Proceedings of the National Academy of Sciences of the United States of America, 105, 10 67610 680.Google Scholar
Martin, H.A. 1978. Evolution of the Australian flora and vegetation through the Tertiary: evidence from pollen. Alcheringa, 2, 181202.CrossRefGoogle Scholar
McKelvey, B.C. Stephenson, N.C.N. 1990. A geological reconnaissance of the Radok Lake area, Amery oasis, Prince Charles Mountains. Antarctic Science, 2, 5366.Google Scholar
McKelvey, B.C., Hambrey, M.J., Harwood, D.M., Mabin, M.C.G., Webb, P.-N. Whitehead, J.M. 2001. The Pagodroma Group - a Cenozoic record of the East Antarctic Ice Sheet in the northern Prince Charles Mountains. Antarctic Science, 13, 455468.Google Scholar
Mildenhall, D.C. 1989. Terrestrial palynology. In Barrett, P.J., ed. Antarctic Cenozoic history from the CIROS-1 drillhole, McMurdo Sound. Department of Scientific and Industrial Research Bulletin, 245, 119127.Google Scholar
Moore, L.B. Irwin, J.B. 1978. The Oxford book of New Zealand plants. Wellington: Oxford University Press, 234 pp.Google Scholar
Prebble, J.G., Raine, J.I., Barrett, P.J. Hannah, M.J. 2006. Vegetation and climate from two Oligocene glacioeustatic sedimentary cycles (31 and 24 Ma) cored by the Cape Roberts Project, Victoria Land Basin, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 231, 4157.Google Scholar
Raine, J.I. 1998. Terrestrial palynomorphs from Cape Roberts Project drillhole CRP-1, Ross Sea, Antarctica. Terra Antartica, 5, 539548.Google Scholar
Raine, J.I. Askin, R.A. 2001. Terrestrial palynology of Cape Roberts Project drillhole CRP-3, Victoria Land Basin, Antarctica. Terra Antartica, 8, 389400.Google Scholar
Stroeven, A.P., Prentice, M.L. Kleman, J. 1996. On marine microfossil transport and pathways in Antarctica during the late Neogene: evidence from the Sirius Group at Mount Fleming. Geology, 24, 727730.2.3.CO;2>CrossRefGoogle Scholar
Taviani, M., Hannah, M., Harwood, D.M., Ishman, S.E., Johnson, K., Olney, M., Riesselman, C., Tuzzi, E., Askin, R., Beu, A.G., Blair, S., Cantarelle, V., Ceregato, A., Corrado, S., Mohr, B., Niessen, S.H.H., Persico, D., Petrushak, S., Raine, J.I. Warny, S. & the ANDRILL-SMS Science Team. 2008–2009. Palaeontological characterization and analysis of the AND-2A core, ANDRILL Southern McMurdo Sound Project, Antarctica. Terra Antartica, 15, 113146.Google Scholar
Truswell, E.M. 1986. Palynology. In Barrett, P.J., ed. Antarctic Cenozoic history from the MSSTS-1 drillhole, McMurdo Sound. Department of Scientific and Industrial Research Bulletin, 237, 131134.Google Scholar
Truswell, E.M. Macphail, M.K. 2009. Polar forests on the edge of extinction: what does the fossil spore and pollen evidence from East Antarctica say? Australian Systematic Botany, 22, 57106.Google Scholar
Truswell, E.M., Quilty, P.G., McMinn, A., Macphail, M.K. Wheller, G.E. 2005. Late Miocene vegetation and palaeoenvironments of the Drygalski Formation, Heard Island, Indian Ocean: evidence from palynology. Antarctic Science, 17, 427442.Google Scholar
Van Geel, B. van der Hammen, T. 1978. Zygnemataceae in Quaternary Colombian sediments. Review of Paleobotany and Palynology, 25, 377392.Google Scholar
Webb, P.-N. Harwood, D.M. 1987. Terrestrial flora of the Sirius Formation: its significance for late Cenozoic glacial history. Antarctic Journal of the United States, 22 (4), 711.Google Scholar
Webb, P.-N., Harwood, D.M., McKelvey, B.C., Mercer, J.H. Stott, L.B. 1984. Cenozoic marine sedimentation and ice volume variation on the East Antarctic craton. Geology, 12, 287291.2.0.CO;2>CrossRefGoogle Scholar
Whitehead, J.M. McKelvey, B.C. 2001. The stratigraphy of the Pliocene-lower Pleistocene Bardin Bluffs Formation, Amery oasis, northern Prince Charles Mountains, Antarctica. Antarctic Science, 13, 7986.Google Scholar
Whitehead, J.M., Harwood, D.M. McMinn, A. 2003. Ice-distal Upper Miocene marine strata from inland Antarctica. Sedimentology, 50, 531552.Google Scholar
Whitehead, J.M., Quilty, P.G., McKelvey, B.C. O'Brien, P.E. 2006. A review of the Cenozoic stratigraphy and glacial history of the Lambert Graben-Prydz Bay region, East Antarctica. Antarctic Science, 18, 8389.Google Scholar
Whitehead, J.M., Harwood, D.M., McKelvey, B.C., Hambrey, M.J. McMinn, A. 2004. Diatom biostratigraphy of the Cenozoic fjordal Pagodroma Group, Northern Prince Charles Mountains, East Antarctica. Australian Journal of Earth Sciences, 51, 521547.Google Scholar
Wilson, G.S., Roberts, A.P., Verosub, K.L., Florindo, F. Sagnotti, L. 1998. Magnetobiostratigraphic chronology of the Eocene-Oligocene transition in the CIROS-1 core, Victoria Land margin, Antarctica: implications for Antarctic glacial history. Geological Society of America Bulletin, 110, 3547.Google Scholar