Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T00:49:38.690Z Has data issue: false hasContentIssue false

Spatiotemporal dynamics of C and N isotopic signature of zooplankton: a seasonal study on a man-made lake in the Mediterranean region

Published online by Cambridge University Press:  08 October 2014

Amedeo Fadda*
Affiliation:
Department of Sciences for Nature and Environmental Resources (DipNET) of the University of Sassari (Italy), 4 07100 Sassari (SS), Italy
Ruth Rawcliffe
Affiliation:
CNR Institute of Ecosystem Study (CNR-ISE), Largo Tonolli 50 28922 Verbania (VB), Italy
Bachisio Mario Padedda
Affiliation:
Department of Sciences for Nature and Environmental Resources (DipNET) of the University of Sassari (Italy), 4 07100 Sassari (SS), Italy
Antonella Lugliè
Affiliation:
Department of Sciences for Nature and Environmental Resources (DipNET) of the University of Sassari (Italy), 4 07100 Sassari (SS), Italy
Nicola Sechi
Affiliation:
Department of Sciences for Nature and Environmental Resources (DipNET) of the University of Sassari (Italy), 4 07100 Sassari (SS), Italy
Federica Camin
Affiliation:
IASMA, Fondazione Edmund Mach, Research and Innovation Centre, Via Mach 1, San Michele all'Adige (TN), Italy
Luca Ziller
Affiliation:
IASMA, Fondazione Edmund Mach, Research and Innovation Centre, Via Mach 1, San Michele all'Adige (TN), Italy
Marina Manca
Affiliation:
CNR Institute of Ecosystem Study (CNR-ISE), Largo Tonolli 50 28922 Verbania (VB), Italy
*
*Corresponding author: [email protected]
Get access

Abstract

Reservoirs are subject to severe fluctuations in the water level from seasonal and interannual climatic variations, as well as abstraction for irrigation, hydropower, and drinking water. This can affect the matter and energy transfer through the food web, of which zooplankton is of crucial importance. We traced seasonal changes in the carbon and nitrogen stable isotope signatures of suspended particulate matter and crustacean zooplankton from a small Mediterranean reservoir. The δ13C and δ15N isotopic baseline signature of the lake varied seasonally, becoming more 13C-depleted and 15N-enriched in winter and less 13C-depleted and 15N-enriched values in the drier summer months, when external water inputs were negligible. Seasonal changes in the δ13C and δ15N SPM isotopic signature were well reflected in the herbivorous cladocerans. δ15N of the calanoid and cyclopoid copepods were at least 3‰ greater than for the herbivorous cladocera, suggesting their potential use as a food resource. δ13C of predatory copepods were also consistent with seasonal fluctuations in the δ13C SPM baseline, except during the heavy rains in early spring, when they were observably rich in lipids with a higher C/N ratio, suggesting that they had entered dormancy and were not actively feeding in the water column. This indicates the importance of taking into account not only the seasonality, but the community dynamics and trophic level of zooplankton taxa when interpreting stable isotope studies.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cabana, G. and Rasmussen, J.B., 1996. Comparison of aquatic food chains using nitrogen isotopes. Proc. Natl. Acad. Sci. USA, 93, 1084410847.CrossRefGoogle ScholarPubMed
Camin, F., Perini, M., Colombari, G., Bontempo, L., Versini, G., 2008. Influence of dietary composition on the carbon, nitrogen, oxygen and hydrogen stable isotope rations of milk. Rapid. Comm. Mass. Spectrom., 22, 16901696.CrossRefGoogle Scholar
Caroni, R., Free, G., Visconti, A. and Manca, M., 2012. Phytoplankton functional traits and seston stable isotopes ratio: a functional-based approach in a deep, subalpine lake, Lake Maggiore (N. Italy). J. Limnol., 71, 8494.CrossRefGoogle Scholar
Cattaneo, A., Manca, M. and Rasmussen, J.B., 2004. Peculiarities in the stable isotope composition of organisms from an alpine lake. Aquat. Sci. 66, 440445.CrossRefGoogle Scholar
de Bernardi, R., Giussani, G. and Manca, M., 1987. Cladocera: predators and prey. Hydrobiology, 145, 225243.CrossRefGoogle Scholar
DeMott, W.R., 1986. The role of taste in food selection by freshwater zooplankton. Oecologia, 69, 334340.CrossRefGoogle ScholarPubMed
DeMott, W.R., 1995. Optimal foraging by a suspension-feeding copepod: responses to short-term and seasonal variation in food resources. Oecologia, 103, 230240.CrossRefGoogle ScholarPubMed
Dussart, B.H. and Defaye, D., 2001. “Introduction to the Copepoda.” Guides to the Identification of the Microinvertebrates of the Continental Waters of the World (Netherlands).
Einsle, U., 1996. Copepoda: Cyclopoida: Genera Cyclops, Megacyclops, Acanthocyclops. In: Dumont, H.J.F. (ed.), Guides to the Identification of the Microinvertebrates of Continental Waters of the World, Vol. 10, SPB Publisching, Amsterdam.Google Scholar
El-Sabaawi, R., Dower, J.F., Kainz, M. and Mazumder, A., 2009. Characterizing dietary variability and trophic positions of coastal calanoid copepods: insight from stable isotopes and fatty acids. Mar. Biol., 156, 225237.CrossRefGoogle Scholar
Fadda, A., Marková, S., Kotlík, P., Lugliè, A., Padedda, B., Buscarinu, P., Sechi, N. and Manca, M., 2011. First record of planktonic crustaceans in Sardinian reservoirs. Biologia, 66, 856865.CrossRefGoogle Scholar
Fadda, A., Manca, M., Camin, F., Ziller, L., Mariani, A.M., Padedda, B.M., Sechi, N., Virdis, T. and Lugliè, A., 2014. “Study on the suspended particulate matter of a Mediterranean artificial lake (Sos Canales Lake) using Stable Isotope Analysis of carbon and nitrogen”. Submitted.
Finlay, J.C. and Kendall, C., 2008. Stable Isotopes in Ecology and Environmental Science. Stable Isotope tracing of temporal and spatial variability in organic matter sources to freshwater ecosystems, pp. 283324.
Geraldes, A.M. and Boavida, M.J., 2004. What factors affect the pelagic cladocerans of the meso-eutrophic Azibo Reservoirs?. Ann. Limnol. - Int. J. Lim., 40, 101111.CrossRefGoogle Scholar
Gonçalves, A.M., Pardal, M.Â., Marques, S.C., Mendes, S., Fernández-Gómez, M.J., Galindo-Villardón, M.P. and Azeiteiro, U.M., 2012. Responses of Copepoda life-history stages to climatic variability in a Southern-European temperate estuary. Zoof. Stud., 51, 321335.Google Scholar
Grey, J., Jones, R.I. and Sleep, D., 2000. Stable isotope analysis of the origins of zooplankton carbon in lakes of differing trophic state. Oecologia, 123, 232240.CrossRefGoogle ScholarPubMed
Grey, J. and Jones, R.I., 2001. Seasonal changes in the importance of the source of organic matter to the diet of zooplankton in Loch Ness, as indicated by stable isotope analysis. Limnol. Oceanogr., 46, 505513.CrossRefGoogle Scholar
Gu, B., Chapman, A.D. and Schelske, C.L., 2006. Factors controlling seasonal variations in stable isotope composition of particulate organic matter in a soft water eutrophic lake. Limnol. Oceanogr. 51, 28372848.CrossRefGoogle Scholar
Gyllström, M. and Hansson, L.A., 2004. Dormancy in freshwater zooplankton: induction, termination and the importance of benthic-pelagic coupling . Aquat. Sci., 66, 274295.CrossRefGoogle Scholar
Henry, R., Panarelli, E.A., Caglierani, S.M. and Casanova, D.C., 2011. Plankton richness and abundance in several different hydrological situation in lakes later to a river: case a study in the mouth zone of a tributary into a tropical reservoir. Oecol. Aust., 15, 537558.CrossRefGoogle Scholar
Karlsson, J., Jonsson, A., Meili, M. and Jansson, M., 2003. Control of zooplankton dependence on allochthonous organic carbon in humic clear water lakes in Northern Sweden. Limnol. Oceanogr., 48, 269276.CrossRefGoogle Scholar
Lee, R.F., Hagen, W. and Kattner, G., 2006. Lipid storage in marine zooplankton. Mar. Ecol. Progr. Ser., 307, 273306.CrossRefGoogle Scholar
Lehman, M.F., Bernasconi, S.M. and McKenzie, J.A., 2004. Seasonal variation of the δ13C and δ15N of particulate and dissolved carbon and nitrogen in Lake Lugano: constraints on biogeochemical cycling in a eutrophic lake. Limnol. Oceanogr., 49, 415429.CrossRefGoogle Scholar
Leira, M. and Cantonati, M., 2008. Effects of water-level fluctuations on lakes: an annotated bibliography. Hydrobiology, 612, 171184.CrossRefGoogle Scholar
Lindeman, R.L., 1942. The trophic-dynamic aspect of ecology. Ecology, 23, 399417.CrossRefGoogle Scholar
Manca, M. and Comoli, P., 2000. Biomass estimates of freshwater zooplankton from length-carbon regression equations. J. Limnol., 59, 1518.CrossRefGoogle Scholar
Marcarelli, A.M., Colden, V.B., Mineau, M.M. and Hall, R.O., 2011. Quantitiy and quality: unifying food web and ecosystem perspectives on the role of resource subsidies in freshwaters. Ecology, 92, 12151225.CrossRefGoogle Scholar
Matthews, B. and Mazumder, A., 2003. Consequences of large temporal variability of zooplankton δ15N for modeling fish trophic position and variation. Limnol. Oceanogr., 50, 14041414.CrossRefGoogle Scholar
Mauchline, J., 1998. The Biology of Calanoid Copepods, Academic Press, London.Google Scholar
McCauley, E., (1984). The estimation of abundance and biomass of zooplankton in samples. In: Downing, J.A. and Rigler, F.H. (eds.), A Manual of Methods for the Assessment of Secondary Productivity in Freshwater, Blackwell Scientific Publication, 228265.
Moss, B., Hering, D., Green, A.J., Aidoud, A., Becares, E., Beklioglu, M., Bennion, H., Boix, D., Brucet, S., Carvalho, L., Clement, B., Davidson, T., Declerck, S., Dobson, M., van Donk, E., Dudley, B., Feuchtmayr, H., Friberg, N., Grenouillet, G., Hillebran, H., Hobaek, A., Irvine, K., Jeppesen, E., Johnson, R., Jones, I., Kernan, M., Lauridsen, T.L., Manca, M., Meerhoff, M., Olafsson, J., Ormerod, S., Papastergiadou, E., Penning, W.E., Ptacnik, R., Quintana, X., Sandin, L., Seferlis, M., Simpson, G., Trigal, C., Verdonschot, P., Verschoor, A.M. and Weyhenmeyer, G.A., 2009. Climate change and the future of freshwater biodiversity in Europe: a primer for policy-makers. Freshwat. Rev., 2, 103130.CrossRefGoogle Scholar
Naselli-Flores, N., 2003. Man-made lakes in Mediterranean semi-arid climate: the strange case of Dr. Deep and Mr Shallow Lake. Hydrobiology, 506, 1321.CrossRefGoogle Scholar
Niesel, V., Hehn, E., Sudbrack, R., Willmitzer, H. and Chorus, I., 2007. The occurrence of the Dynophyte species Gymnodinium uberrimum and Peridinium willei in German reservoirs. J. Plank. Res., 29, 347357.CrossRefGoogle Scholar
Nowlin, W.H., Evarts, J.L. and Vanni, M.J., 2005. Release rates and potential fates of nitrogen and phosphorus from sediments in a eutrophic reservoir. Fresh. Biol. 50, 301322.CrossRefGoogle Scholar
Perbiche-Neves, G.R., Romero Ferreira, R. and Gomes Nogueira, M., 2011. Phytoplankton structure in two contrasting cascade reservoirs (Paranapanema River, Southeast Brazil). Biologia, 66, 967976.CrossRefGoogle Scholar
Perga, M.E. and Gerdeaux, D., 2006. Seasonal variability in the δ13C and δ15N values of the zooplankton taxa in two alpine lakes. Acta Ecol., 30, 6977.CrossRefGoogle Scholar
Peterson, B.J. and Fry, B., 1987. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst., 18, 293320.CrossRefGoogle Scholar
Petrusek, A., Hobæk, A., Nilssen, J.P., Skage, M., Černý, M., Brede, N. and Schwenk, K., 2008. A taxonomic reappraisal of the European Daphnia longispina complex (Crustacea, Cladocera, Anomopoda). Zool. Scr., 37, 507519.CrossRefGoogle Scholar
Post, D.M., 2002. Using stable isotopes to estimate trophic position: models, methods, and assumption. Ecology, 83, 703718.CrossRefGoogle Scholar
Power, M., Guiguer, K.R.R.A. and Barton, D.R., 2003. Effects of temperature on isotopic enrichment in Daphnia magna: implications for aquatic food-web studies. Rapid. Commun. Mass Spectrom., 17, 16191625.CrossRefGoogle ScholarPubMed
Rau, G.H., Takahashi, T. and Des Marais, D.J., 1989. Latitudinal variations in plankton C: implications for CO and productivity in past oceans. Nature, 341, 165.CrossRefGoogle Scholar
Rau, G.H., Takahashi, T., Des Marais, D.J., Repeta, D.J. and Martin, J.H., 1992. The relationship between δ13C of organic matter and [CO2 (aq)] in ocean surface water: Data from a JGOFS site in the northeast Atlantic Ocean and a model. Geochim. et Cosmochim. Acta, 56, 14131419.CrossRefGoogle Scholar
Shurin, J.B., Gruner, D.S. and Hillebrand, H., 2006. All wet or dried up? Real differences between aquatic and terrestrial food webs. Proc. R. Soc. B., 273, 19.CrossRefGoogle ScholarPubMed
Smyntek, P.M., Teece, M.A., Schulz, K.L. and Storch, A.J., 2008. Taxonomic differences in the essential fatty acid composition of groups of freshwater zooplankton relate to reproductive demands and generation time. Freshwat. Biol., 53, 17681782.CrossRefGoogle Scholar
Sprules, W.G. and Bowerman, J.E., 1988. Omnivory and Food Chain Length in Zooplankton Food Webs . Ecology, 69, 418426.CrossRefGoogle Scholar
StatSoft Inc., 2001. STATISTICA for Windows (Data Analysis Software System), Version 6. StatSoft, Tulsa, 1098 pp.
Strørm, K.M., 1946. The ecological niche. Nature 157, 375.CrossRefGoogle Scholar
Thielsh, A., Brede, N., Petrusek, A., De Meesteer, L. and Schewnk, K., 2009. Contribution of cyclic parthenogenesis and colonization history to population structure in Daphnia . Mol. Ecol., 18, 16161628.CrossRefGoogle Scholar
Thompson, R.M., Dunne, J.A. and Woodward, G., 2012. Freshwater food webs: towards a more fundamental understanding of biodiversity and community dynamics. Freshwat. Biol., 57, 13291341.CrossRefGoogle Scholar
Tilzer, Max M. 1973. “Diurnal periodicity in the phytoplankton assemblage of a high mountain lake.” Limnol. Oceanogr. 18, 1530.CrossRefGoogle Scholar
Tundisi, J.G., 1999. Theoretical basis for reservoir management. In: Tundisi, J.G. and Straškraba, M. (eds.), Theoretical Reservoir Ecology and Its Applications s.l.: IIE. BAS, Backhuys Publishers, 505.Google Scholar
Vanderploeg, H.A., Cavaletto, J.F., Liebig, J.R. and Gardner, W.S., 1998. Limnocalanus macrurus (Copepoda: Calanoida) retains a marine arctic lipid and life cycle strategy in Lake Michigan. J. Plank. Res., 20, 15811597.CrossRefGoogle Scholar
Visconti, A. and Manca, M., 2011. Seasonal changes in the δ13C and δ15N signatures of the Lago Maggiore pelagic food web. J.  Limnol., 70, 263271.CrossRefGoogle Scholar
Visconti, A., Volta, P., Fadda, A., Di Guardo, A. and Manca, M., 2013. Seasonality, littoral vs. pelagic carbon sources and stepwise 15N-enrichment of pelagic food web in a deep subalpine lake: the role of planktivorous fish. Can. J. Fish. Aquat. Sci., 71, 436446.CrossRefGoogle Scholar
Woodland, R.J., Rodrìguez, M.A., Magnan, P., Glèmet, H. and Cabana, G., 2012. Incorporating temporally dynamic baselines in isotopic mixing models. Ecology, 93, 131144.CrossRefGoogle Scholar
Zanden, M., Vander, J. and Rasmussen, J.B., 1999. Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecologv 80, 13951404.CrossRefGoogle Scholar
Zohary, T., Erez, J., Gophen, M., Bermanfrank, I. and Stiller, M., 1994. Seasonality of stable carbon isotopes within the pelagic food web of Lake Kinneret. Limnol. Oceanogr. 39, 10301043.CrossRefGoogle Scholar
Zohary, T. and Ostrovsky, I., 2011. Ecologica impacts of excessive water level fluctuations in stratified freshwater lakes. Inland Water, 1, 4759.CrossRefGoogle Scholar