We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Animal proteins are naturally 15N enriched relative to the diet and the extent of this difference (Δ15Nanimal-diet or N isotopic fractionation) has been correlated to N use efficiency (NUE; N gain or milk N yield/N intake) in some recent ruminant studies. The present study used meta-analysis to investigate whether Δ15Nanimal-diet can be used as a predictor of NUE across a range of dietary conditions, particularly at the level of between-animal variation. An additional objective was to identify variables related to N partitioning explaining the link between NUE and Δ15Nanimal-diet. Individual values from eight publications reporting both NUE and Δ15Nanimal-diet for domestic ruminants were used to create a database comprising 11 experimental studies, 41 treatments and individual animal values for NUE (n=226) and Δ15Nanimal-diet (n=291). Data were analyzed by mixed-effect regression analysis taking into account experimental factors as random effects on both the intercept and slope of the model. Diets were characterized according to the INRA feeding system in terms of N utilization at the rumen, digestive and metabolic levels. These variables were used in a partial least squares regression analysis to predict separately NUE and Δ15Nanimal-diet variation, with the objective of identifying common variables linking NUE and Δ15Nanimal-diet. For individuals reared under similar conditions (within-study) and at the same time (within-period), the variance of NUE and Δ15Nanimal-diet not explained by dietary treatments (i.e. between-animal variation plus experimental error) was 35% and 55%, respectively. Mixed-effect regression analysis conducted with treatment means showed that Δ15Nanimal-diet was significantly and negatively correlated to NUE variation across diets (NUE=0.415 −0.055×Δ15Nanimal-diet). When using individual values and taking into account the random effects of study, period and diet, the relationship was also significant (NUE=0.358 −0.035×Δ15Nanimal-diet). However, there may be a biased prediction for animals close to zero, or in negative, N balance. When using a novel statistical approach, attempting to regress between-animal variation in NUE on between-animal variation in Δ15Nanimal-diet (without the influence of experimental factors), the negative relationship was still significant, highlighting the ability of Δ15Nanimal-diet to capture individual variability. Among the studied variables related to N utilization, those concerning N efficiency use at the metabolic level contributed most to predict both Δ15Nanimal-diet and NUE variation, with rumen fermentation and digestion contributing to a lesser extent. This study confirmed that on average Δ15Nanimal-diet can predict NUE variation across diets and across individuals reared under similar conditions.
The present research studied the effect of a dietary inclusion with Hermetia illucens larvae meal (Hi) on rainbow trout’s fillets chemical composition. The effect of Hi inclusion in diets on rainbow trout chemical characteristics was evaluated. Trout were fed three different diets: control (C, no Hi inclusion), 25% and 50% of substitution of fish meal with Hi (Hi25 and Hi50, respectively). Fillets were analysed to quantify proximate composition, carbohydrates percentage, colour parameters, nucleotides concentration, fatty acids profile, volatile organic compounds (VOCs) and myofibrillar and sarcoplasmic concentrations. Diets did not affect proximate composition. Contrariwise, Hi50 diet decreased fillet yellowness and both substitution percentages affected negatively adenosine monophosphate concentration. Saturated fatty acids, mostly C12 : 0, increased their contents in relation with Hi inclusion at the expense of monounsaturated and polyunsaturated (both n-3 and n-6) fatty acids. Less modifications were reported in VOCs as only heptanal and octanal concentrations were affected, no new compounds appeared in relation with Hi inclusion. No modifications in proteins patterns were shown even if myofibrillar content decreased in trout fed Hi50. The results highlighted that chemical modifications occurred in fillets were related to the chemical composition of the H. illucens meal and to the percentage of inclusion in the diet. Substitution of fish meal with a precisely percentage of H. illucens meal could be a potential future solution in order to decrease the quantity of fish meal used in aquafeeds.
Negative energy balance (NEB) is an altered metabolic state in modern high-yielding dairy cows. This metabolic state occurs in the early postpartum period when energy demands for milk production and maintenance exceed that of energy intake. Negative energy balance or poor adaptation to this metabolic state has important effects on the liver and can lead to metabolic disorders and reduced fertility. The roles of regulatory factors, including transcription factors (TFs) and micro RNAs (miRNAs) have often been separately studied for evaluating of NEB. However, adaptive response to NEB is controlled by complex gene networks and still not fully understood. In this study, we aimed to discover the integrated gene regulatory networks involved in NEB development in liver tissue. We downloaded data sets including mRNA and miRNA expression profiles related to three and four cows with severe and moderate NEB, respectively. Our method integrated two independent types of information: module inference network by TFs, miRNAs and mRNA expression profiles (RNA-seq data) and computational target predictions. In total, 176 modules were predicted by using gene expression data and 64 miRNAs and 63 TFs were assigned to these modules. By using our integrated computational approach, we identified 13 TF-module and 19 miRNA-module interactions. Most of these modules were associated with liver metabolic processes as well as immune and stress responses, which might play crucial roles in NEB development. Literature survey results also showed that several regulators and gene targets have already been characterized as important factors in liver metabolic processes. These results provided novel insights into regulatory mechanisms at the TF and miRNA levels during NEB. In addition, the method described in this study seems to be applicable to construct integrated regulatory networks for different diseases or disorders.
This experiment evaluated the impacts of supplementing a yeast-derived product (Celmanax; Church & Dwight Co., Inc., Princeton, NJ, USA) on productive and health responses of beef steers, and was divided into a preconditioning (days 4 to 30) and feedlot receiving phase (days 31 to 69). In all, 84 Angus × Hereford steers were weaned on day 0 (BW=245±2 kg; age=186±2 days), and maintained in a single group from days 0 to 3. On day 4, steers were allocated according to weaning BW and age to a 21-pen drylot (4 steers/pen). Pens were randomly assigned to (n=7 pens/treatment): (1) no Celmanax supplementation during the study, (2) Celmanax supplementation (14 g/steer daily; as-fed) from days 14 to 69 or (3) Celmanax supplementation (14 g/steer daily; as-fed) from days 31 to 69. Steers had free-choice access to grass-alfalfa hay, and were also offered a corn-based concentrate beginning on day 14. Celmanax was mixed daily with the concentrate. On day 30, steers were road-transported for 1500 km (24 h). On day 31, steers returned to their original pens for the 38-day feedlot receiving. Shrunk BW was recorded on days 4, 31 and 70. Feed intake was evaluated daily (days 14 to 69). Steers were observed daily (days 4 to 69) for bovine respiratory disease (BRD) signs. Blood samples were collected on days 14, 30, 31, 33, 35, 40, 45, 54 and 69, and analyzed for plasma cortisol, haptoglobin, IGF-I, and serum fatty acids. Preconditioning results were analyzed by comparing pens that received (CELM) or not (CONPC) Celmanax during the preconditioning phase. Feedlot receiving results were analyzed by comparing pens that received Celmanax from days 14 to 69 (CELPREC), days 31 to 69 (CELRECV) or no Celmanax supplementation (CON). During preconditioning, BRD incidence was less (P=0.03) in CELM v. CONPC. During feedlot receiving, average daily gain (ADG) (P=0.07) and feed efficiency (P=0.08) tended to be greater in CELPREC and CELRECV v. CON, whereas dry matter intake was similar (P⩾0.29) among treatments. No other treatment effects were detected (P⩾0.20). Collectively, Celmanax supplementation reduced BRD incidence during the 30-day preconditioning. Moreover, supplementing Celmanax tended to improve ADG and feed efficiency during the 38-day feedlot receiving, independently of whether supplementation began during preconditioning or after feedlot entry. These results suggest that Celmanax supplementation benefits preconditioning health and feedlot receiving performance in beef cattle.
Intramuscular fat (IMF) content and composition are relevant for the meat industry due to their effect on human health and meat organoleptic properties. A divergent selection experiment for IMF of Longissimus dorsi (LD) muscle was performed in rabbits during eight generations. The aim of this study is to estimate the correlated responses to selection for IMF on the fatty acid composition of LD. Response to selection for IMF was 0.34 g/100 g of LD, representing 2.4 phenotypic SD of the trait. High-IMF line showed 9.20% more monounsaturated fatty acids (MUFA) and 0.39%, 9.97% and 10.3% less n-3, n-6 and polyunsaturated fatty acids (PUFA), respectively, than low-IMF line. The main MUFA and PUFA individual fatty acids followed a similar pattern, except for C18:3n-3 that was greater in the high-IMF line. We did not observe differences between lines for the percentage of total saturated fatty acids, although high-IMF line showed greater C14:0 and C16:0 and lower C18:0 percentages than low-IMF line. Heritability estimates were generally high for all fatty acids percentages, ranging from 0.43 to 0.59 with a SD around 0.08, showing an important genetic component on these traits. Genetic correlations between IMF and LD fatty acid percentages were strong and positive for C14:0, C16:1, C18:1n-9, and MUFA, ranging from 0.88 to 0.97, and strong and negative for C18:0, C18:2n-6, C20:4n-6, n-6 and PUFA, ranging from −0.83 to −0.91. These correlations were accurately estimated, with SD ranging from 0.02 to 0.06. The genetic correlations between IMF and other fatty acids were estimated with lower accuracy. In general, phenotypic and genetic correlations were of the same order. Our experiment shows that selection for IMF strongly affects the fatty acid composition of meat, due the high heritabilities of fatty acids and their high genetic correlations with IMF.
Raising calves and youngstock is an essential part of beef production. High on-farm mortality (unassisted death and euthanasia) is a consequence of poor animal health and welfare, and is economically unfavourable. The present study aimed to identify the reasons and risk factors for beef calf and youngstock on-farm mortality, using registry data for the years 2013 to 2015. Cox regression models were applied for the data of four age groups: calves up to 30 days (n=21 075), calves 1 to 5 months (n=21 116), youngstock 6 to 19 months (n=22 637) and youngstock ⩾20 months of age (n=9582). We found that dystocia, small birth weight and older parity of the mother increased the mortality hazard in calves up to 30 days of age. A summer birth was a common protective factor against mortality for calves up to 30 days and calves 1 to 5 months of age, compared with birth in other seasons. Among calves 1 to 5 months old, being the offspring of a first-parity cow was associated with significantly higher risk of death compared with calves who were the offspring of third- or higher-parity cows. A high herd-level stillbirth rate was associated with higher mortality hazard. The most commonly reported reasons for calf mortality were digestive disorders and respiratory disease. According to the models of youngstock from 6 months of age, male sex was a risk factor for mortality. Cattle having more than 10% dairy breed experienced a higher mortality risk in the ⩾20 months age group. No significant differences were found across regions, herd size or different breeds in any of the calf or youngstock groups. Metabolic and digestive disorders, as well as traumas and accidents, were the most common causes of mortality in beef youngstock older than 6 months. We can conclude that in young calves, animal-level factors associated with calving had a high impact on mortality. Further, timing calving for the warmer spring months would benefit calf survivability. Further studies including complementary information about farm factors adapted across the whole youngstock period is highly needed to provide sound recommendations in reducing on-farm mortality.
Considering economic and environmental issues is important in ensuring the sustainability of dairy farms. The objective of this study was to investigate univariate relationships between lactating dairy cow gastro-enteric methane (CH4) production predicted from milk mid-IR (MIR) spectra and technico-economic variables by the use of large scale and on-farm data. A total of 525 697 individual CH4 predictions from milk MIR spectra (MIR-CH4 (g/day)) of milk samples collected on 206 farms during the Walloon milk recording scheme were used to create a MIR-CH4 prediction for each herd and year (HYMIR-CH4). These predictions were merged with dairy herd accounting data. This allowed a simultaneous study of HYMIR-CH4 and 42 technical and economic variables for 1024 herd and year records from 2007 to 2014. Pearson correlation coefficients (r) were used to assess significant relationships (P<0.05). Low HYMIR-CH4 was significantly associated with, amongst others, lower fat and protein corrected milk (FPCM) yield (r=0.18), lower milk fat and protein content (r=0.38 and 0.33, respectively), lower quantity of milk produced from forages (r=0.12) and suboptimal reproduction and health performance (e.g. longer calving interval (r=−0.21) and higher culling rate (r=−0.15)). Concerning economic results, low HYMIR-CH4 was significantly associated with lower gross margin per cow (r=0.19) and per litre FPCM (r=0.09). To conclude, this study suggested that low lactating dairy cow gastro-enteric CH4 production tended to be associated with more extensive or suboptimal management practices, which could lead to lower profitability. The observed low correlations suggest complex interactions between variables due to the use of on-farm data with large variability in technical and management practices.
Longer-lived cows tend to be more profitable and the stayability trait is a selection criterion correlated to longevity. An alternative to the traditional approach to evaluate stayability is its definition based on consecutive calvings, whose main advantage is the more accurate evaluation of young bulls. However, no study using this alternative approach has been conducted for Zebu breeds. Therefore, the objective of this study was to compare linear random regression models to fit stayability to consecutive calvings of Guzerá, Nelore and Tabapuã cows and to estimate genetic parameters for this trait in the respective breeds. Data up to the eighth calving were used. The models included the fixed effects of age at first calving and year-season of birth of the cow and the random effects of contemporary group, additive genetic, permanent environmental and residual. Random regressions were modeled by orthogonal Legendre polynomials of order 1 to 4 (2 to 5 coefficients) for contemporary group, additive genetic and permanent environmental effects. Using Deviance Information Criterion as the selection criterion, the model with 4 regression coefficients for each effect was the most adequate for the Nelore and Tabapuã breeds and the model with 5 coefficients is recommended for the Guzerá breed. For Guzerá, heritabilities ranged from 0.05 to 0.08, showing a quadratic trend with a peak between the fourth and sixth calving. For the Nelore and Tabapuã breeds, the estimates ranged from 0.03 to 0.07 and from 0.03 to 0.08, respectively, and increased with increasing calving number. The additive genetic correlations exhibited a similar trend among breeds and were higher for stayability between closer calvings. Even between more distant calvings (second v. eighth), stayability showed a moderate to high genetic correlation, which was 0.77, 0.57 and 0.79 for the Guzerá, Nelore and Tabapuã breeds, respectively. For Guzerá, when the models with 4 or 5 regression coefficients were compared, the rank correlations between predicted breeding values for the intercept were always higher than 0.99, indicating the possibility of practical application of the least parameterized model. In conclusion, the model with 4 random regression coefficients is recommended for the genetic evaluation of stayability to consecutive calvings in Zebu cattle.
Provision of an appropriate dustbathing substrate may allow broiler chickens to satisfy a natural motivation and give them an opportunity to exercise. The main aim of this study was to evaluate the extent to which different substrates promote dustbathing behaviour in broilers. The trial was replicated over three production cycles in one commercial broiler house, with ~22 000 Ross broilers housed per cycle. The birds were provided with access to five experimental substrates from day 10 of the 6-week production cycle. The substrates included the following: (1) peat (P), (2) oat hulls (OH), (3) straw pellets (SP), (4) clean wood shavings (WS), and (5) litter control (C). The substrates were provided in 15 steel rings (1.1 m in diameter, three rings per substrate) dispersed throughout the house. The level of occupancy of the rings, behaviours performed in each substrate, and the effect of ring position (central or edge of house) were assessed in weeks 3, 4, 5 and 6 using scan sampling from video footage. Where substrates successfully promoted dustbathing, the length and components of the bouts (including number of vertical wing shakes and ground pecks) were also assessed. Results showed that birds used P significantly more than the remaining substrates for dustbathing (P<0.001). Oat hulls were the second most preferred substrate for dustbathing, with significantly more birds dustbathing in the OH compared with SP, WS and C (P<0.001). The least sitting inactive was also seen in the P and OH rings compared with the SP, WS and C (P<0.001). The highest levels of foraging were recorded in the P, OH and WS compared with SP and the C. Position of the rings did not affect the types of behaviours performed in any substrate, although overall more birds were counted in the central compared with edge rings (P=0.001). More detailed information on dustbathing behaviour was only recorded in the P and OH treatments, and there were no differences in the length of dustbathing bout, or components of the bout between them (P>0.05). The use of OH is likely to be more environmentally sustainable than that of P, and our results suggest that this substrate is relatively successful in promoting dustbathing. However, a preference was still observed for P and further work should investigate whether other suitable substrates could better reflect its qualities.
We used a bivariate animal model to investigate the genetic correlations between yield traits or days open (DO) as characters measured in cows and semen production traits as characters measured in bulls. Lactation records of 305-day milk, fat, and protein yields, and DO, from 386 809 first-lactation Holstein cows in Hokkaido, Japan, that calved between 2008 and 2014 were used. Semen production records were collected between 2005 and 2014 and included volume per ejaculate (VOL), sperm concentration (CON), number of sperm per ejaculate (NUM), progressive motility index of sperm (MOT), and MOT after freeze-thawing (A-MOT). Number of sperm per ejaculate was log-transformed into a NUM score (NUMS). A total of 30 373 semen production records from 1196 bulls were obtained. The pedigree file used for analysing the records was involving 885 345 animals. Heritability was estimated for VOL (0.42), CON (0.12), NUMS (0.37), MOT (0.08), and A-MOT (0.11). Weak and negative genetic correlations were recorded between yield traits measured in cows and VOL, CON or NUMS measured in bulls. Moderate and negative genetic correlations were obtained between DO and MOT (–0.42) or A-MOT (–0.43). Selection focused on MOT or A-MOT measured in bulls may therefore improve DO measured in cows.
The mammalian target of rapamycin (mTOR) has been shown to be involved in lipopolysaccharide (LPS)-induced immune responses in many mammal cells. Here, we suggest that the mTOR pathway is involved in the intestinal inflammatory responses evoked by LPS treatment in chicken embryos. The intestinal tissue from Specific pathogen free chick embryos was cultured in the presence of LPS for 2 h. Secretory immunoglobulin A (sIgA) concentrations, messenger RNA (mRNA) expression of cytokines, and protein levels of nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), mTOR and p70 ribosomal S6 kinase (p70S6K) were determined. The results showed that LPS treatment increased sIgA concentrations in a dose-dependent manner. The mRNA levels of interleukine (IL)-6, IL-8, IL-10, tumor necrosis factor-α and Toll-like receptor (TLR) 4 were upregulated by LPS treatment (P<0.05). Lipopolysaccharide increased the phosphorylation of Jun N-terminal kinase (JNK), p38 MAPK and NF-κB (P<0.05) while decreasing the phosphorylation level of mTOR (P<0.05). Supplementation of leucine at doses of 10, 20 and 40 mM dose-dependently decreased sIgA production. Leucine supplementation at 40 mM restored the phosphorylation level of mTOR and p70S6K while suppressing the phosphorylation levels of NF-κB (P<0.05) and partially down-regulating the phosphorylation of p38 MAPK and JNK. The transcription of IL-6 was significantly decreased by leucine supplementation. These results suggested that leucine could alleviate LPS-induced inflammatory responses by down-regulating NF-κB signaling pathway and evoking mTOR/p70S6K signaling pathway, which may involve in the regulation of the intestinal immune system in chicken embryos.
Carotenoid pigments signature in the fat using visible reflectance spectroscopy has shown high potential for distinguishing pasture-fed (P) from stall concentrate-fed (S) lamb carcasses. However, a recent study demonstrated a between-breed variability in the digestive and metabolic fate of carotenoids pigments. The present study was therefore designed to investigate the extent to which this between-breed variability may affect the reliability of diet authentication using visible spectroscopy of the fat. We used 1054 male lambs from three breeds (Romane (ROM), Ile-de-France (OIF) and Limousine (LIM)). The breed-feed breakdown was 148 P and 258 S ROM, 102 P and 92 S OIF and 168 P and 286 S LIM lambs. The reflectance spectrum of perirenal fat was measured at 24 h postmortem at wavelengths between 400 and 700 nm. We quantified light absorption in the 450 to 510 nm area by calculating a traceability index (AVMI450 to 510) considered as an indicator of the carotenoid concentration in the fat (method 1) and we performed a multivariate analysis over the full set of reflectance data between 400 and 700 nm (method 2). The reliability of method 1 proved very variable across breeds, with a percentage of correctly classified lambs reaching 95.3%, 90.5% and 79.4% in ROM, LIM and OIF lambs, respectively. Despite these between-breeds differences, the threshold of the linear discriminant analysis performed on AVMI450 to 510 was fairly similar between breeds; when all the data for the three breeds were pooled, the threshold cut-off value was 224 units and the method correctly classified 90.2% of the 1054 lambs. Using the full range of reflectance data (method 2) enabled to significantly increase the proportion of correctly classified lambs for both OIF and LIM breeds, but not for ROM breed. It enabled to correctly classify 96.1%, 94.5% and 94.8% of the ROM, LIM and OIF lambs. The reliability of the discrimination was not significantly different when pooling all lambs for the three breeds than when using a breed-specific database (93.9% and 95.2%, respectively).
Compared with conventional identification methods, DNA-based genetic approaches such as single nucleotide polymorphisms (SNPs) and satellites are much more reliable for pig identification and meat traceability. In this study, multiallelic amplification fragments with multiple SNPs, incorporating the advantages of both SNPs and microsatellites, were explored for the first time for pig identification and meat traceability. Primer pairs for multiallelic fragments and their optimal SNPs were successfully selected and used for identification of individuals from Suzhong and Duroc populations. Meanwhile, the combined panel of the above mentioned primer pairs together with their optimal SNPs for Suzhong and/or Duroc pigs were validated for identification of the hybrids (Suzhong×Duroc). Therefore, we have successfully selected multiallelic amplification fragments with multiple SNPs to identify pigs and their meat samples from Suzhong, Duroc or their hybrids. Our study demonstrates that our method is more powerful for pig identification or meat traceability than SNPs or microsatellites.
Feed efficiency traits (FETs) are important economic indicators in poultry production. Because feed intake (FI) is a time-dependent variable, longitudinal models can provide insights into the genetic basis of FET variation over time. It is expected that the application of longitudinal models as part of genome-wide association (GWA) and genomic selection (i.e. genome-wide selection (GS)) studies will lead to an increase in accuracy of selection. Thus, the objectives of this study were to evaluate the accuracy of estimated breeding values (EBVs) based on pedigree as well as high-density single nucleotide polymorphism (SNP) genotypes, and to conduct a GWA study on longitudinal FI and residual feed intake (RFI) in a total of 312 chickens with phenotype and genotype in the F2 population. The GWA and GS studies reported in this paper were conducted using β-spline random regression models for FI and RFI traits in a chicken F2 population, with FI and BW recorded for each bird weekly between 2 and 10 weeks of age. A single SNP regression approach was used on spline coefficients for weekly FI and RFI traits, with results showing that two significant SNPs for FI occur in the synuclein (SNCAIP) gene. Results also show that these regions are significantly associated with the spline coefficients (q2) for 5- and 6-week-old birds, while GWA study results showed no SNP association with RFI in F2 chickens. Estimated breeding value predictions obtained using a pedigree-based best linear unbiased prediction (ABLUP) model were then compared with predictions based on genomic best linear unbiased prediction (GBLUP). The accuracy was measured as correlation between genomic EBV and EBV with the phenotypic value corrected for fixed effects divided by the square root of heritability. The regression of observed on predicted values was used to estimate bias of methods. Results show that prediction accuracies using GBLUP and ABLUP for the FI measured from 2nd to 10th week were between 0.06 and 0.46 and 0.03 and 0.37, respectively. These results demonstrate that genomic methods are able to increase the accuracy of predicted breeding values at later ages on the basis of both traits, and indicate that use of a longitudinal model can improve selection accuracy for the trajectory of traits in F2 chickens when compared with conventional methods.
Immunocastration (ImC) has been proposed as an animal welfare-friendly alternative to reduce sexual and aggressive behavior and to increase carcass fat deposition with positive effects on meat quality. The β-adrenergic agonists (β-AA) are known as repartitioning agents that acts increasing lean tissue deposition. The combined use of these technologies can positively affect meat quality and increase retail cuts yield. Thus, this research was conducted to evaluate the combined effects of ImC and β-AA (zilpaterol hydrochloride (ZH) and ractopamine hydrochloride (RH)) on retail cuts, bones, and fat trim of feedlot finished Bos indicus (Nellore) cattle. No interaction was observed between sexual condition and diet for any trait. The ImC decreased cold carcass, hindquarter (HQ), forequarter (FQ) and combined brisket, short ribs and flank (BSF) weights. The ImC also showed smaller weights of retail cuts and bones on the HQ and on the FQ than non-castrated (NoC). Fat trim weights did not differ from ImC and NoC. The most of subprimal cuts were heavier in NoC than in ImC. Feeding β-AA did not affect cold carcass weight; however, animals fed ZH had higher weights of HQ and retail cuts in HQ when compared with RH and control (CO) group, with no differences between RH and CO for both traits. The weights of FQ, BSF, retail cuts in FQ, as well as bones and fat trimmings were not affected by β-AA. In summary, ImC decreases carcass and retail cut weights, whereas ZH supplementation leads to an improvement in carcass lean tissue and retail cuts.
Genetic selection and nutrition management have played a central role in the development of commercial rabbitry industry over the last few decades, being able to affect productive and immunological traits of the animals. However, the implication of different energy sources in animals from diverse genetic lines achieving such evolutionary success remains still unknown. Therefore, in this work, 203 female rabbits housed and bred in the same conditions were used from their first artificial insemination until their fifth weaning. The animals belonged to three different genetic types diverging greatly on breeding goals (H line, hyper-prolific (n=66); LP line, robust (n=67) and R line, selected for growth rate (n=67), and were assigned to two experimental diets, promoting major differences in energy source (cereal starch or animal fat)). The aims of this work were to: (1) characterize and describe blood leucocyte populations of three lines of rabbit does in different physiological stages during their reproductive period: first artificial insemination, first weaning, second parturition and fifth weaning; and (2) study the possible influence of two different experimental diets on the leucocyte populations in peripheral blood. Flow cytometry analyses were performed on blood samples taken from females at each different sampling stade. Lymphocyte populations at both weanings were characterized by significantly lower counts of total, CD5+ and CD8+ lymphocytes (–19.8, –21.7 and –44.6%; P<0.05), and higher counts of monocytes and granulocytes (+49.2 and +26.2%; P<0.05) than in the other stages. Females had higher blood counts of lymphocytes B, CD8+ and CD25+ and lower counts of CD4+ at first than at fifth weaning (+55.6, +85.8, +57.5, –14.5%; P<0.05). G/L ratio was higher at both weanings (P<0.05), and CD4+/CD8+ ratio increased progressively from the 1AI to the 5 W (P<0.001). Regarding the effect of genetic type in blood leucocyte counts, LP animals presented the highest counts for total, B, CD5+ and CD8+ lymphocytes (+16.7, +31.8, +24.5 and +38.7; P<0.05), but R rabbits showed the highest counts for monocytes and granulocytes (+25.3 and +27.6; P<0.05). The type of diet given during the reproductive life did not affect the leucocyte population counts. These results indicate that there are detectable variations in the leucocyte profile depending on the reproductive stage of the animal (parturition, weaning or none of them). Moreover, foundation for reproductive longevity criteria allows animals to be more capable of adapting to the challenges of the reproductive cycle from an immunological viewpoint.
The specialization process associated with genetic selection could be associated with functional disorders, affecting the reproductive success of females (fitness). We hypothesized that by modulating energy acquisition and allocation of females we could balance productivity and reproductive success. To test this hypothesis, we used 203 rabbit females belonging to three genetic types: H (n=66) maternal line specialized in prolificacy, LP (n=67) generalist maternal line, R (n=70) paternal line specialized in growth rate. We fed each genetic type with two diets specifically designed to promote milk yield (AF) or body reserves recovery (CS). We controlled females between their first and fifth reproductive cycles, recording traits related with productivity and fitness of females. H females fed CS had on average 11.2±0.43 kits with an individual weight of 54±1.2 g at birth and 525±11 g at weaning. Their conception rate when multiparous was 44% and their survival rate at the end of the experiment 30%. When they were fed AF, the individual weight of kits was 3.8 g heavier (P<0.05) at birth and 38 g heavier at weaning (P<0.05), the conception rate when multiparous increased 23 percentage points (P<0.05) and the survival rate at the end of the experiment 25 percentage points (P<0.05). LP females fed CS had on average 10.8±0.43 kits with an individual weight of 52±1.2 g at birth and 578±11 g at weaning. Their conception rate when multiparous was 79% and their survival rate at the end of the experiment 75%. When they were fed AF, it only increased individual weight of kits at weaning (+39 g; P<0.05). R females fed CS had on average 8.4±0.43 kits with an individual weight of 60±1.2 g at birth and 568±11 g at weaning. Their conception rate when multiparous was 60% and their survival rate at the end of the experiment 37%. When they were fed AF, they presented 1.4 kits less at birth (P<0.05) but heavier at birth (+4.9 g; P<0.05) and at weaning (+37 g; P<0.05). Therefore, we observed that genetic types prioritized different fitness components and that diets could affected them. In this sense, seems that more specialized genetic types, were more sensitive to diets than the more generalist type.
The ability to properly assess and accurately phenotype true differences in feed efficiency among dairy cows is key to the development of breeding programs for improving feed efficiency. The variability among individuals in feed efficiency is commonly characterised by the residual intake approach. Residual feed intake is represented by the residuals of a linear regression of intake on the corresponding quantities of the biological functions that consume (or release) energy. However, the residuals include both, model fitting and measurement errors as well as any variability in cow efficiency. The objective of this study was to isolate the individual animal variability in feed efficiency from the residual component. Two separate models were fitted, in one the standard residual energy intake (REI) was calculated as the residual of a multiple linear regression of lactation average net energy intake (NEI) on lactation average milk energy output, average metabolic BW, as well as lactation loss and gain of body condition score. In the other, a linear mixed model was used to simultaneously fit fixed linear regressions and random cow levels on the biological traits and intercept using fortnight repeated measures for the variables. This method split the predicted NEI in two parts: one quantifying the population mean intercept and coefficients, and one quantifying cow-specific deviations in the intercept and coefficients. The cow-specific part of predicted NEI was assumed to isolate true differences in feed efficiency among cows. NEI and associated energy expenditure phenotypes were available for the first 17 fortnights of lactation from 119 Holstein cows; all fed a constant energy-rich diet. Mixed models fitting cow-specific intercept and coefficients to different combinations of the aforementioned energy expenditure traits, calculated on a fortnightly basis, were compared. The variance of REI estimated with the lactation average model represented only 8% of the variance of measured NEI. Among all compared mixed models, the variance of the cow-specific part of predicted NEI represented between 53% and 59% of the variance of REI estimated from the lactation average model or between 4% and 5% of the variance of measured NEI. The remaining 41% to 47% of the variance of REI estimated with the lactation average model may therefore reflect model fitting errors or measurement errors. In conclusion, the use of a mixed model framework with cow-specific random regressions seems to be a promising method to isolate the cow-specific component of REI in dairy cows.
To achieve functional but also productive females, we hypothesised that it is possible to modulate acquisition and allocation of animals from different genetic types by varying the main energy source of the diet. To test this hypothesis, we used 203 rabbit females belonging to three genetic types: H (n=66), a maternal line characterised by hyper-prolificacy; LP (n=67), a maternal line characterised by functional hyper-longevity; R (n=79), a paternal line characterised by growth rate. Females were fed with two isoenergetic and isoprotein diets differing in energy source: animal fat (AF) enhancing milk yield; cereal starch (CS) promoting body reserves recovery. Feed intake, weight, perirenal fat thickness (PFT), milk yield and blood traits were controlled during five consecutive reproductive cycles (RCs). Females fed with CS presented higher PFT (+0.2 mm, P<0.05) and those fed AF had higher milk yield (+11.7%, P<0.05). However, the effect of energy source varied with the genetic type and time. For example, R females presented a decrease in PFT at late lactation (−4.3%; P<0.05) significantly higher than that observed for H and LP lines (on av. −0.1%; P>0.05), particularly for those fed with AF. Moreover, LP females fed with AF progressively increased PFT across the RC, whereas those fed with CS increased PFT during early lactation (+7.3%; P<0.05), but partially mobilised it during late lactation (−2.8%; P<0.05). Independently of the diet offered, LP females reached weaning with similar PFT. H females fed with either of the two diets followed a similar trajectory throughout the RC. For milk yield, the effect of energy source was almost constant during the whole experiment, except for the first RC of females from the maternal lines (H and LP). These females yielded +34.1% (P<0.05) when fed with CS during this period. Results from this work indicate that the resource acquisition capacity and allocation pattern of rabbit females is different for each genetic type. Moreover, it seems that by varying the main energy source of the diet it is possible to modulate acquisition and allocation of resources of the different genetic types. However, the response of each one depends on its priorities over time.