We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Ingestion of small amounts of some types of condensed tannins (CTs) by ruminant livestock can provide nutritional, environmental and economic benefits. However, practical methods are needed to make these tannins more available to ruminant livestock. Results from previous trials with crude quebracho and black wattle tannin indicated that cattle and/or sheep would not preferentially drink water containing these tannins. Therefore, we conducted preference trials to determine if cattle and sheep would learn to prefer water containing purified grape seed tannin (GST) that provided up to 2% of their daily dry matter (DM) intake. After gradual exposure to increasing amounts of this tannin in water during a pre-trial period, five adult ewes and five yearling heifers fed lucerne (Medicago sativa) pellets (19% CP) were offered water and several concentrations of GST solutions for either 15 (sheep trial) or 20 days (cattle trial). We measured intake of all liquids daily. Concentrations of blood urea were also measured for heifers when they drank only tannin solutions or water. Both sheep and cattle developed preferences for water with GST in it over water alone (P < 0.01) although this preference appeared earlier in the trial for sheep than for cattle. For the sheep, mean daily intake of water alone and all tannin solutions (in total) was 0.6 and 6.1 l, respectively. For the cattle, mean daily intake of water and all tannin solutions in total was 21.8 and 20.6 l, respectively, in the first half of the trial and 10.8 and 26.1 l, respectively, in the second half of the trial. Compared with the other tannin solutions, both sheep and cattle drank more of the solution with the highest tannin concentration (2% of daily DM intake as GST) than of water on more trial days (P < 0.05). Ingestion of water with the highest concentration of GST reduced blood plasma urea concentration in the cattle by 9% to 14% (P ⩽ 0.10) compared with ingestion of water alone. Results from the trials suggest that providing grape seed and perhaps other CTs via drinking water may be a practical way to introduce CTs into sheep and cattle diets.
The protein-rich non-conventional detoxified karanja cake (dKC) can be used in place of conventional protein supplements like soybean meal (SBM), groundnut meal, etc. in livestock feed. The present study was conducted to assess the effect of two levels of dKC by replacing SBM on testicular architecture, semen quality and expressions of mRNAs encoding luteinizing hormone receptor (LHR) and insulin-like growth factor (IGF-I) in testes of ram lambs. Eighteen ram lambs were randomly divided into three groups (n = 6) and fed different levels (%) of karanja cake (0% replacement – control; 50% replacement – dKC-50 and 75% replacement – dKC-75) for 140 days. After 120 days of feeding, the semen from the animals was collected and analysed. The testes samples were collected on day 140 of feeding for transcripts expression studies. The dKC-50 group had no change in BW, whereas dKC-75 group showed decreased (P < 0.05) BW as compared with control. The number of animals ejaculated semen in dKC-75 group was lower (P < 0.05) than the control group. A reduction (P < 0.05) in LHR expression in dKC-75 was observed, whereas a reduction in IGF-I expression (P < 0.05) was observed in dKC-50 and dKC-75 as compared with control group. The study reveals that in ram lambs, long-term feeding of dKC at 50% replacement of SBM may not affect BW. However, long-term feeding of dKC as a replacement of SBM may affect testicular function.
This study was designed to determine whether methyl-β-cyclodextrin (MCD) can substitute for albumin in incubation medium for neonatal swine adipose tissue explants, or whether MCD affects metabolism and cytokine expression. Subcutaneous adipose tissue explants (100 ± 10 mg) were prepared from 21-day-old pigs. Explants were incubated in medium 199 supplemented with 25 mM HEPES, 1.0 nM insulin at 37°C. The medium also contained bovine serum albumin (BSA) or MCD at 0%, 0.05%, 0.1%, 0.2% or 0.3%. Tissue explants were treated with these media for 1 h and then switched to the same basal incubation medium containing 0.05% BSA. Explants were removed from basal medium at 2 or 8 h of incubation, and real-time PCR was performed to assess expression of tumor necrosis α (TNF) and interleukin 6 (IL6), acetyl CoA carboxylase (ACAC) and fatty acid synthase (FASN). Alternatively, rates of 14C-glucose oxidation and lipogenesis were monitored ± insulin (100 nM), following MCD treatment. Incubation with BSA had minimal effects on gene expression or adipose tissue metabolism, only producing a doubling in TNF mRNA abundance (P < 0.01). Treatment with MCD increased TNF mRNA abundance by eightfold (P < 0.009), whereas IL6 gene expression increased a 100-fold (P < 0.001) with a suppression in ACAC and FASN expression (P < 0.01). This was paralleled by MCD inhibition of insulin-stimulated glucose oxidation and lipogenesis (P < 0.001). Addition of a TNF antibody to the incubation medium alleviated this inhibition of insulin-stimulated glucose metabolism by ∼30% (P < 0.05).
This study provides a detailed description of the development of the gastrointestinal tract (GIT) of farmed red deer (Cervus elaphus) calves over the first 12 months of age. GIT development was measured using a combination of computerised tomography (CT) scanning and traditional slaughter plus dissection techniques. Red deer calves of a known birth date were randomly assigned to two treatment groups. A group of five animals were repeatedly CT scanned at 31, 63, 92, 135, 207, 275 and 351 days of age to identify GIT organs and determine their volume. From a group of 20 animals, subsets of four individuals were also scanned at corresponding ages (except 135 days of age). They were immediately euthanised and dissected after CT scanning to compare CT-scanned results with actual anatomical measurements. Individual organ weights were compared with their respective organ volumes determined by CT scanning and were found to have a strong, positive relationship. The combined rumen and reticulum (RR) CT-scanned volume was compared with its volume determined by the water-displacement technique and this also showed good correlation between the two techniques (R = 0.92). The allometric growth rates of organs, relative to animal live weight gains, in descending order, were the rumen, omasum, reticulum, abomasum, caecum blind sac, kidneys, spleen and liver. The red deer GIT was continuing to grow and develop when the last measurement was taken at 351 days of age. The greatest growth of the RR, when expressed in terms of empty weight, was between 31 and 92 days of age. Compared with sheep and cattle, it appears that the red deer have a similar or greater rate of RR development up until approximately 60 to 90 days of age; however, the final increments of GIT maturity in deer may take longer to complete, with the empty weight of the RR gaining 7.5 g/day between 275 and 351 days of age. CT scanning was validated in this study as a viable technique to follow GIT development in the same animals over time, and it provided novel information on allometric organ growth. The success of CT scanning highlights the potential future use of diagnostic imaging for GIT development studies.
A minimally invasive biopsy technique was evaluated for udder tissue collection in dairy cows with Escherichia coli mastitis. Meanwhile, the effect of taking repeated liver and udder biopsies on the systemic and local acute phase response (APR) of the dairy cows was investigated during the disease. The cows were divided into a biopsy group (B) (n = 16) and a no-biopsy group (NB) (n = 16) and were sampled in the acute disease stage and in the recovery stage. The cows’ pre-disease period served as a control period for establishing baseline values for the investigated parameters. A total of 32 Holstein-Friesian cows were inoculated with 20 to 40 colony-forming units (cfu) of E. coli in one front quarter at 0 hour. Liver biopsies were collected at −144, 12, 24 and 192 h, and udder biopsies were collected at 24 and 192 h post E. coli inoculation (PI) using a minimally invasive biopsy technique. Effects of combined biopsying were investigated by recording production traits, clinical response, and measuring inflammatory milk and blood parameters: E. coli, somatic cell count, milk amyloid A (MAA) levels, white blood cell count, polymorphonuclear neutrophilic leukocyte numbers and serum amyloid A levels at several time points. E. coli inoculation changed all production parameters and the clinical and inflammatory response in all cows except one that was not infected. Combined biopsying had no constant or transient effect on the daily feed intake, the clinical responsiveness or the blood parameters, but affected the daily milk yield and some milk parameters transiently, that is, the presence of blood in milk, increased E. coli counts and MAA levels during the acute disease stage. Combined biopsying had no effect on the parameters in the recovery stage apart from the presence of blood in the milk. In conclusion, although, a minimally invasive biopsy technique was used, tissue damages could not be avoided when biopsying and they transiently affected the inflammatory parameters in the mammary gland. Nevertheless, we believe combined biopsying of liver and udder is as an acceptable approach to study the systemic and local APR in dairy cows during E. coli mastitis, if the timing of biopsying and other types of sampling is planned accordingly.
Pig farms in the Netherlands producing boars have different levels of boar taint prevalence, as assessed by sensory evaluation with the human nose at the slaughter line. With a questionnaire to 152 Dutch pig producers (response rate 59%), farm and management characteristics were identified that are potentially associated with farm-level boar taint prevalence. Lower farm-level boar taint prevalence was associated with a smaller group size, a smaller pen surface per boar, newer housing equipment, not practicing restricted feeding in the last period before delivery, a longer fasting period before slaughter, a higher stocking weight and a lower fraction of boars from purebred dam line sows or from Pietrain terminal boars. These characteristics can be used to develop farm-level intervention strategies to control boar taint. More research effort is needed to establish causal relationships.
The aim of this trial was to study the concentration of zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), selenium (Se), cobalt (Co) and iodine (I) in milk and blood serum of lactating donkeys, taking into account the effects of lactation stage and dietary supplementation with trace elements. During a 3-month period, 16 clinically healthy lactating donkeys (Martina-Franca-derived population), randomly divided into two homogeneous groups (control (CTL) and trace elements (TE)), were used to provide milk and blood samples at 2-week intervals. Donkeys in both groups had continuous access to meadow hay and were fed 2.5 kg of mixed feed daily, divided into two meals. The mixed feed for the TE group had the same ingredients as the CTL, but was supplemented with a commercial premix providing 163 mg Zn, 185 mg Fe, 36 mg Cu, 216 mg Mn, 0.67 mg Se, 2.78 mg Co and 3.20 mg I/kg mixed feed. The concentrations of Zn, Fe, Cu, Mn, Se, Co and I were measured in feeds, milk and blood serum by inductively coupled plasma-MS. Data were processed by ANOVA for repeated measures. The milk concentrations of all the investigated elements were not significantly affected by the dietary supplementation with TE. Serum concentrations of Zn, Fe, Cu Mn and Se were not affected by dietary treatment, but TE-supplemented donkeys showed significantly higher concentrations of serum Co (1.34 v. 0.69 μg/l) and I (24.42 v. 21.43 μg/l) than unsupplemented donkeys. The effect of lactation stage was significant for all the investigated elements in milk and blood serum, except for serum manganese. A clear negative trend during lactation was observed for milk Cu and Se concentrations (−38%), whereas that of Mn tended to increase. The serum Cu concentration was generally constant and that of Co tended to increase. If compared with data reported in the literature for human milk, donkey milk showed similarities for Zn, Mn, Co and I. Furthermore, this study indicated that, in the current experimental conditions, the mineral profile of donkey milk was not dependent on dietary TE supply.
Biohydrogenation of C18 fatty acids in the rumen of cows, from polyunsaturated and monounsaturated to saturated fatty acids, is lower on clover than on grass-based diets, which might result in increased levels of polyunsaturated fatty acids in the milk from clover-based diets affecting its nutritional properties. The effect of forage type on ruminal hydrogenation was investigated by in vitro incubation of feed samples in rumen fluid. Silages of red clover, white clover and perennial ryegrass harvested in spring growth and in third regrowth were used, resulting in six silages. Fatty acid content was analysed after 0, 2, 4, 6, 8 and 24 h of incubation to study the rate of hydrogenation of unsaturated C18 fatty acids. A dynamic mechanistic model was constructed and used to estimate the rate constants (k, h) of the hydrogenation assuming mass action-driven fluxes between the following pools of C18 fatty acids: C18:3 (linolenic acid), C18:2 (linoleic acid), C18:1 (mainly vaccenic acid) and C18:0 (stearic acid) as the end point. For kC18:1,C18:2 the estimated rate constants were 0.0685 (red clover), 0.0706 (white clover) and 0.0868 (ryegrass), and for kC18:1,C18:3 it was 0.0805 (red clover), 0.0765 (white clover) and 0.1022 (ryegrass). Type of forage had a significant effect on kC18:1,C18:2 (P < 0.05) and a tendency to effect kC18:1,C18:3 (P < 0.10), whereas growth had no effect on kC18:1,C18:2 or kC18:1,C18:3 (P > 0.10). Neither forage nor growth significantly affected kC18:0,C18:1, which was estimated to be 0.0504. Similar, but slightly higher, results were observed when calculating the rate of disappearance for linolenic and linoleic acid. This effect persists regardless of the harvest time and may be because of the presence of plant secondary metabolites that are able to inhibit lipolysis, which is required before hydrogenation of polyunsaturated fatty acids can begin.
The objectives of this study were to investigate the muscle fiber characteristics of the pectoralis major muscle, and its relation to growth performance in the random bred control (RBC) and heavy weight (HW) Japanese quail lines at 42 days of age. The HW line had greater body (232.0 v. 100.2 g, P < 0.001) and pectoralis major muscle (19.0 v. 6.2 g, P < 0.001) weights than the RBC line. Color differences were observed between the superficial and deep regions of the pectoralis major muscle, with the superficial region showing a higher value of lightness than the deep region of the RBC or HW lines (P < 0.001). The percentage of the superficial region in the pectoralis major muscle was higher in the HW line compared with the RBC line (46.2% v. 38.0%, P = 0.017). There were no significant differences in the total fiber number in the superficial and deep regions between the two quail lines (P = 0.718). The HW quail line showed a larger mean fiber cross-sectional area (CSA; 375.5 v. 176.6 μm2, P < 0.001) and type IIA fiber CSA (243.7 v. 131.9 μm2, P < 0.001) than the RBC quail line. The HW line also had greater CSA percentage (60.2% v. 34.2%, P < 0.001) and number percentage (41.6% v. 14.2%, P < 0.001) of type IIB fibers, although there were no significant differences in type IIB fiber CSA between the RBC and HW lines (P = 0.219). Therefore, greater body and muscle weights of the HW line are caused by differences in muscle fiber characteristics, especially the proportion of type IIB fiber and the CSA of type IIA fiber, compared with the RBC line. The results of this study suggest that muscle fiber hypertrophy has more impact on body and muscle weights of the different quail lines than muscle fiber hyperplasia.
An understanding of the mechanisms regulating milk yield in sows is crucial for producers to make the best management decisions during lactation. Suckling of mammary glands by piglets is one factor that is essential for development of these glands during lactation and for the maintenance of lactation in sows. The process of mammary development is not static as the majority of it takes place in the last third of gestation, continues during lactation, is followed by involution at weaning and starts over again in the next gestation. During involution, the mammary glands undergo a rapid and drastic regression in parenchymal tissue, and this can also occur during lactation if a gland is not suckled regularly. Indeed, the pattern of regression is similar for glands that involute at weaning or during lactation. Suckling during 12 to 14 h postpartum is insufficient to maintain lactation and the process of involution that occurs in early lactation is reversible within 1 day of farrowing but is irreversible if a gland is not used for 3 days. However, milk yield from a gland which is ‘rescued’ within the first 24 h remains lower throughout lactation. Suckling does not only affect milk yield in the ongoing lactation, but it also seems to affect that of the next lactation. Indeed, non-suckling of a mammary gland in first-parity sows decreased development and milk yield of that gland in second parity. Nursing behaviour of piglets in early lactation was also affected, where changes were indicative of piglets in second parity being hungrier when suckling glands that were not previously used. It is not known, however, if the same effects would be seen between the second and third lactation. Furthermore, the minimum suckling period required to ensure maximal milk yield from a gland in the next lactation is not known. This review provides an update on our current knowledge of the importance of suckling for mammary development and milk yield in swine.
This study aimed to determine whether there was a difference in skin permeability to methylene blue dye or skin morphology between dairy cows that differed in their susceptibility to digital dermatitis (DD) and to assess the effect of contact with slurry on skin permeability. Twenty nine dairy cows were monitored for DD during the winter housing period and classed as DD+ (previous DD infection, n = 17), or DD− (no recorded infection, n = 12). The animals were culled and a skin sample was taken from above the heel of each hind foot and frozen. Samples were later defrosted and one sample from each cow was tested for permeability, whereas the other was treated with slurry for 24 h before permeability testing. To test permeability, methylene blue dye was applied to the skin surface in a Franz diffusion cell. After 48 h, the amount of dye that had passed through the skin was estimated. The stratum corneum thickness and the density of hair follicles were determined from additional heel skin samples. Skin permeability to methylene blue dye was significantly greater for samples that had been treated with slurry but did not differ between DD+ and DD− animals. No difference was found in the stratum corneum thickness or density of hair follicles between DD+ and DD− animals. These findings imply that individual differences in general skin permeability are not a major factor in determining DD susceptibility and suggest that contact with slurry could contribute to DD infection by increasing the permeability of the skin, which may facilitate pathogen entry. Further work is required to clarify the role played by slurry in the pathogenesis of DD.
The review is based on a compiled data set from studies quantifying liver release of glucose concomitant with uptake of amino acids (AA) and other glucogenic precursors in periparturient dairy cows. It has become dogma that AAs are significant contributors to liver gluconeogenesis in early lactation, presumably accounting for the observed lack of glucogenic precursors to balance estimated glucose need. Until recently, there has been paucity in quantitative data on liver nutrient metabolism in the periparturient period. Propionate is the quantitatively most important glucogenic precursor throughout the periparturient period. However, the immediate post partum increment in liver release of glucose is not followed by an equivalent increment in propionate uptake, because of the lower rate of increment in feed intake compared with the rate of increment in requirements for milk synthesis. The quantitative data on liver metabolism of AA do not support the hypothesis that the rapid post partum increase in net liver release of glucose is supported by increased utilisation of AA for gluconeogenesis. Only alanine is likely to contribute to liver release of glucose through its role in the inter-organ transfer of nitrogen from catabolised AA. AAs seem to be prioritised for anabolic purposes, indicating the relevance of investigating effects of supplying additional protein to post partum dairy cows. Combining data from quantitative and qualitative experimental techniques on L-lactate metabolism point to the conclusion that the quantitatively most important adaptation of metabolism to support the increased glucose demand in the immediate post partum period is endogenous recycling of glucogenic carbon through lactate. This is mediated by a dual site of adaptation of metabolism in the liver and in the peripheral tissues, where the liver affinity for L-lactate is increased and glucose metabolism in peripheral tissues is shifted towards L-lactate formation over complete oxidation.
MicroRNAs (miRNAs) are a class of ∼22 nucleotide-long small noncoding RNAs that target mRNAs for translational repression or degradation. miRNAs target mRNAs by base-pairing with the 3′-untranslated regions (3′-UTRs) of mRNAs. miRNAs are present in various species, from animals to plants. In this review, we summarize the identification, expression, and function of miRNAs in four important farm animal species: cattle, chicken, pig and sheep. In each of these species, hundreds of miRNAs have been identified through homology search, small RNA cloning and next generation sequencing. Real-time RT-PCR and microarray experiments reveal that many miRNAs are expressed in a tissue-specific or spatiotemporal-specific manner in farm animals. Limited functional studies suggest that miRNAs have important roles in muscle development and hypertrophy, adipose tissue growth, oocyte maturation and early embryonic development in farm animals. Increasing evidence suggests that single-nucleotide polymorphisms in miRNA target sites or miRNA gene promoters may contribute to variation in production or health traits in farm animals.
The consequences of a low litter average birth weight phenotype for postnatal growth performance and carcass quality of all progeny, and testicular development in male offspring, were investigated. Using data from 25 sows with one, and 223 sows with two consecutive farrowing events, individual birth weight (BW) was measured and each litter between 9 and 16 total pigs born was classified as low (LBW), medium (MBW) or high (HBW) birth weight: low and high BW being defined as >1 standard deviation below or above, respectively, the population mean for each litter size. Litter average BW was repeatable within sows. At castration, testicular tissue was collected from 40 male pigs in LBW and HBW litters with individual BW close to their litter average BW and used for histomorphometric analysis. LBW piglets had a lower absolute number of germ cells, Sertoli cells and Leydig cells in their testes and a higher brain : testis weight ratio than HBW piglets. Overall, LBW litters had lower placental weight and higher brain : liver, brain : intestine and brain : Semitendinosus muscle weight ratios than MBW and HBW litters. In the nursery and grow–finish (GF) phase, pigs were kept in pens by BW classification (9 HBW, 17 MBW and 10 LBW pens) with 13 males and 13 females per pen. Average daily gain tended to be lower in LBW than HBW litters in lactation (P = 0.06) and throughout the nursery and GF phases (P < 0.01), resulting in an increasing difference in body weight between LBW, MBW and HBW litters (P < 0.05). Average daily feed intake was lower (P < 0.001) in LBW than HBW litters in the nursery and GF phases. Feed utilization efficiency (feed/gain) was similar for LBW and HBW litters in the nursery, but was lower (P < 0.001) in HBW than LBW litters in the GF phase. By design, slaughter weight was similar between BW classifications; however, LBW litters needed 9 more days to reach the same slaughter weight than HBW litters (P < 0.001). BW classification did not affect carcass composition traits. In conclusion, LBW litters showed benchmarks of intrauterine growth retardation, LBW had a negative impact on testicular development and germ and somatic cell populations, and was associated with decreased postnatal growth during all phases of production; however, no measurable effect on carcass composition traits was established.
The objective of this study was to determine the pattern of energy metabolites net flux across the portal-drained viscera (PDV) and total splanchnic tissues (TSP) in mature sheep fed varying levels of lucerne hay cubes. Four Suffolk mature sheep (61.4 ± 3.6 kg BW) surgically fitted with multi-catheters were fed four levels of dry matter intake (DMI) of lucerne hay cubes ranging from 0.4- to 1.6-fold the metabolizable energy (ME) requirements for maintenance. Six sets of blood samples were simultaneously collected from arterial and venous catheters at 30-min intervals. With increasing DMI, apparent total tract digestibility increased linearly and quadratically for dry matter (P < 0.05), quadratically (P < 0.05) with a linear tendency (P < 0.1) for organic matter and tended to increase quadratically (P < 0.1) for NDF. PDV release of volatile fatty acids (VFA) and β-hydroxybutyric acid was relatively low at 0.4 M and then linearly increased (P < 0.05) with increasing DMI. Net PDV flux of non-esterified fatty acids showed curvilinear decrease from 0.4 to 1.2 M and then increased at 1.6 M. The respective proportions of each VFA appearing in the portal blood differed (P < 0.05) with DMI and this difference was more obvious from 0.4 to 0.8 M than from 0.8 to 1.6 M. Heat production, as a percentage of ME intake (MEI), decreased linearly (P < 0.05) with increasing DMI accounting for 37%, 21%, 16% and 13% for PDV and 62%, 49%, 33% and 27% for TSP at 0.4, 0.8, 1.2 and 1.6 M, respectively. As a proportion of MEI, total energy recovery including heat production, decreased linearly with increasing DMI (P < 0.05) accounting for 113%, 83%, 62% and 57% for PDV and 140%, 129%, 86% and 83% for TSP at 0.4, 0.8, 1.2 and 1.6 M, respectively. Regression analysis revealed a linear response between MEI (MJ/day per kg BW) and total energy release (MJ/day per kg BW) across the PDV and TSP, respectively. However, respective contributions of energy metabolites to net energy release across the PDV and TSP were highly variable among treatments and did not follow the same pattern of changes in DMI.
The aim of this study was to estimate (co)variance components for milk coagulation properties (MCP) predicted by mid-infrared spectroscopy (MIRS) during routine milk recording, and to assess their relationships with yield and quality traits. A total of 63 470 milk samples from Holstein-Friesian cows were analyzed for MCP, pH and quality characteristics using MIRS. Casein to protein and protein to fat ratios were calculated from information obtained by MIRS. Records were collected across 1 year on 16 089 cows in 345 herds. The model used for genetic analysis included fixed effects of parity and stage of lactation, and random effects of herd-test-day, cow permanent environmental, animal additive genetic and residual. (Co)variance components were assessed in a Bayesian framework using the Gibbs Sampler. Estimates of heritabilities were consistent with those reported in the literature, being moderate for MCP (0.210 and 0.238 for rennet coagulation time (RCT) and curd firmness (a30), respectively), milk contents (0.213 to 0.333) and pH (0.262), and low for somatic cell score (0.093) and yield traits (0.098 to 0.130). Repeatabilities were 0.391 and 0.434 for RCT and a30, respectively, and genetic correlations were generally low, with estimates greater than 0.30 (in absolute value) only for a30 with fat, protein and casein contents. Overall, results suggest that genetic evaluation for MCP predicted by MIRS is feasible at population level, and several repeated measures per cow during a lactation are required to estimate reliable breeding values for coagulation traits.
Existing methods for estimating individual dairy cow energy balance typically either need information on feed intake, that is, the traditional input–output method, or frequent measurements of BW and body condition score (BCS), that is, the body reserve changes method (EBbody). The EBbody method holds the advantage of not requiring measurements of feed intake, which are difficult to obtain in practice. The present study aimed first to investigate whether the EBbody method can be simplified by basing EBbody on BW measurements alone, that is, removing the need for BCS measurements, and second to adapt the EBbody method for real-time use, thus turning it into a true on-farm tool. Data came from 77 cows (primiparous or multiparous, Danish Holstein, Red or Jersey) that took part in an experiment subjecting them to a planned change in concentrate intake during milking. BW was measured automatically during each milking and real-time smoothed using asymmetric double-exponential weighting and corrected for the weight of milk produced, gutfill and the growing conceptus. BCS assessed visually with 2-week intervals was also smoothed. EBbody was calculated from BW changes only, and in conjunction with BCS changes. A comparison of the increase in empty body weight (EBW) estimated from EBbody with EBW measured over the first 240 days in milk (DIM) for the mature cows showed that EBbody was robust to changes in the BCS coefficients, allowing functions for standard body protein change relative to DIM to be developed for breeds and parities. These standard body protein change functions allow EBbody to be estimated from frequent BW measurements alone, that is, in the absence of BCS measurements. Differences in EBbody levels before and after changes in concentrate intake were calculated to test the real-time functionality of the EBbody method. Results showed that significant EBbody increases could be detected 10 days after a 0.2 kg/day increase in concentrate intake. In conclusion, a real-time method for deriving EBbody from frequent BW measures either alone or in conjunction with BCS measures has been developed. This extends the applicability of the EBbody method, because real-time measures can be used for decision support and early intervention.
n-3 polyunsaturated fatty acids (n-3 PUFA) contribute to the normal growth and development of numerous organs in the piglet. The fatty acid composition of piglet tissues is linked to the fatty acid composition of sow milk and, consequently, to the composition of sow diet during the gestation and lactation period. In this study, we investigated the impact of different contents of extruded linseed in the sow diet on the fatty acid composition and desaturase gene expression of piglets. Sows received a diet containing either sunflower oil (low 18:3n-3 with 18:3n-3 representing 3% of total fatty acids) or a mixture of extruded linseed and sunflower oil (medium 18:3n-3 with 9% of 18:3n-3) or extruded linseed (high 18:3n-3 with 27% of 18:3n-3) during gestation and lactation. Fatty acid composition was evaluated on sow milk and on different piglet tissues at days 0, 7, 14, 21 and 28. The postnatal evolution of delta5 (D5D) and delta6 (D6D) desaturase mRNA expression was also measured in the liver of low 18:3n-3 and high 18:3n-3 piglets. The milk of high 18:3n-3 sows had higher proportions of n-3PUFA than that of low 18:3n-3 and medium 18:3n-3 sows. Piglets suckling the high 18:3n-3 sows had greater proportions of 18:3n-3, 20:5n-3, 22:5n-3 and 22:6n-3 in the liver, and of 22:5n-3 and 22:6n-3 in the brain than low 18:3n-3 and medium 18:3n-3 piglets. D5D and D6D mRNA expressions in piglet liver were not affected by the maternal diet at any age. In conclusion, extruded linseed in the sow diet modifies the n-3PUFA status of piglets during the postnatal period. However, a minimal content of 18:3n-3 in the sow diet is necessary to increase the n-3PUFA level in piglet liver and brain. Moreover, modifications in the n-3PUFA fatty acid composition of piglet tissue seem linked to the availability of 18:3n-3 in maternal milk and not to desaturase enzyme expression.