We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In ruminants, methane (CH4) is a by-product of digestion and contributes significantly to the greenhouse gas emissions attributed to agriculture. Grazed grass is a relatively cheap and nutritious feed but herbage species and nutritional quality vary between pastures, with management, land type and season all potentially impacting on animal performance and CH4 production. The objective of this study was to evaluate performance and compare CH4 emissions from cattle of dairy and beef origin grazing two grassland ecosystems: lowland improved grassland (LG) and upland semi-natural grassland (UG). Forty-eight spring-born beef cattle (24 Holstein–Friesian steers, 14 Charolais crossbred steers and 10 Charolais crossbred heifers of 407 (s.d. 29), 469 (s.d. 36) and 422 (s.d. 50) kg BW, respectively), were distributed across two balanced groups that grazed the UG and LG sites from 1 June to 29 September at stocking rates (number of animals per hectare) of 1.4 and 6.7, respectively. Methane emissions and feed dry matter (DM) intake were estimated by the SF6 tracer and n-alkane techniques, respectively, and BW was recorded across three experimental periods that reflected the progression of the grazing season. Overall, cattle grazed on UG had significantly lower (P<0.001) mean daily DM intake (8.68 v. 9.55 kg/day), CH4 emissions (176 v. 202 g/day) and BW gain (BWG; 0.73 v. 1.08 kg/day) than the cattle grazed on LG but there was no difference (P>0.05) in CH4 emissions per unit of feed intake when expressed either on a DM basis (20.7 and 21.6 g CH4 per kg DM intake for UG and LG, respectively) or as a percentage of the gross energy intake (6.0% v. 6.5% for UG and LG, respectively). However, cattle grazing UG had significantly (P<0.001) greater mean daily CH4 emissions than those grazing LG when expressed relative to BWG (261 v. 197 g CH4/kg, respectively). The greater DM intake and BWG of cattle grazing LG than UG reflected the poorer nutritive value of the UG grassland. Although absolute rates of CH4 emissions (g/day) were lower from cattle grazing UG than LG, cattle grazing UG would be expected to take longer to reach an acceptable finishing weight, thereby potentially off-setting this apparent advantage. Methane emissions constitute an adverse environmental impact of grazing by cattle but the contribution of cattle to ecosystem management (i.e. promoting biodiversity) should also be considered when evaluating the usefulness of different breeds for grazing semi-natural or unimproved grassland.
The objective was to investigate the effect of intake before fasting on concentrations of metabolites and hormones, respiratory quotient (RQ) and fasting heat production (HP) using the washed rumen technique and to compare these values with those from the fed state. Six Holstein steers (360±22 kg) were maintained at 21°C and fed three different energy intakes within a replicated 3×3 Latin square design with 21-day periods. Steers were fed alfalfa cubes to provide 1.0, 1.5 and 2.0×NEm during 19 days of each experimental period. Steers were placed in individual metabolism stalls fitted with indirect calorimetry head-boxes on day 20 of each experimental period (FED steers) and fed their normal meal. On day 21 of each period the reticulorumen was emptied, washed and refilled with ruminal buffer (NaCl=96; NaHCO3=24; KHCO3=30; K2HPO4=2; CaCl2=1.5; MgCl2=1.5 mmol/kg of buffer) aerated with 75% N2 and 25% CO2 before introduction to the rumen (steers were not fed; WASHED steers). Each gas exchange was measured over 24 h. HP for 1.0, 1.5 and 2.0×NEm were 479, 597 and 714 kJ/daykg0.75 (s.e.m. =16), respectively. The plateau RQ was 0.756, 0.824 and 0.860 for the 1.0, 1.5 and 2.0×NEm intakes for the FED steers, respectively. After rumen washing, fasting HP was 331, 359 and 400 kJ/daykg0.75 (s.e.m.=13) for 1.0, 1.5, and 2.0×NEm intakes before fasting, respectively. The RQ for WASHED rumen steers was 0.717, 0.710 and 0.719, respectively. Cortisol and β-hydroxybutyrate concentrations in WASHED rumen steers did not exceed threshold levels for severe energy deficit and stress as can be induced from prolonged fasting. This study demonstrates that a fasting state can be emulated using the washed rumen technique, minimizing the time required as opposed to traditional fasting methodologies, without causing a severe energy deficit and stress.
Profitability of beef production can be increased by genetically improving carcass traits. To construct breeding value evaluations for carcass traits, breed-specific genetic parameters were estimated for carcass weight, carcass conformation and carcass fat in five beef cattle breeds in Finland (Hereford, Aberdeen Angus, Simmental, Charolais and Limousin). Conformation and fat were visually scored using the EUROP carcass classification. Each breed was separately analyzed using a multitrait animal model. A total of 6879–19 539 animals per breed had phenotypes. For the five breeds, heritabilities were moderate for carcass weight (h2=0.39 to 0.48, s.e.=0.02 to 0.04) and slightly lower for conformation (h2=0.30 to 0.44, s.e.=0.02 to 0.04) and carcass fat (h2=0.29 to 0.44, s.e.=0.02 to 0.04). The genetic correlation between carcass weight and conformation was favorable in all breeds (rG=0.37 to 0.53, s.e.=0.04 to 0.05), heavy carcasses being genetically more conformed. The phenotypic correlation between carcass weight and carcass fat was moderately positive in all breeds (rP=0.21 to 0.32), implying that increasing carcass weight was related to increasing fat levels. The respective genetic correlation was the strongest in Hereford (rG=0.28, s.e.=0.05) and Angus (rG=0.15, s.e.=0.05), the two small body-sized British breeds with the lowest conformation and the highest fat level. The correlation was weaker in the other breeds (rG=0.08 to 0.14). For Hereford, Angus and Simmental, more conformed carcasses were phenotypically fatter (rP=0.11 to 0.15), but the respective genetic correlations were close to zero (rG=−0.05 to 0.04). In contrast, in the two large body-sized and muscular French breeds, the genetic correlation between conformation and fat was negative and the phenotypic correlation was close to zero or negative (Charolais: rG=−0.18, s.e.=0.06, rP=0.02; Limousin: rG=−0.56, s.e.=0.04, rP=−0.13). The results indicate genetic variation for the genetic improvement of the carcass traits, favorable correlations for the simultaneous improvement of carcass weight and conformation in all breeds, and breed differences in the correlations of carcass fat.
The objectives of this study were to evaluate the effects of Burdizzo castration and abrupt weaning on the behaviour, blood traits and performance of beef calves when weaning was conducted concurrently or consecutively to castration. In total, 64 male beef calves aged between 6 and 7 months were assigned to a 2×2 factorial design with the following treatment groups (n=16 animals per treatment): (1) castrated and concurrently weaned in week 0 (CAS-WEA); (2) castrated in week 0 and weaned in week 4 (CAS-CON); (3) bulls weaned in week 0 (BUL-WEA); and (4) bulls weaned in week 4 (BUL-CON). The behaviour of the calves was observed for 3 days following weaning. Blood was collected weekly from weeks 0 to 5 and analysed for the acute-phase protein haptoglobin, and neutrophil and lymphocyte percentages. BW was recorded weekly from weeks 0 to 7. Animals were slaughtered at 17 months and weight, dressing percentage and carcass classifications were recorded. On day 1 after weaning, the number of vocalizations (calls/10 min) was higher in BUL-WEA (7.2) and CAS-WEA (5.4) than in calves of CAS-CON (2.8) and BUL-CON (2.9) groups (P<0.05). From days 1 to 3 vocalizations decreased in all groups. CAS-CON and BUL-CON animals spent 20% lying on day 1 after weaning compared with 40% in CAS-WEA and BUL-WEA calves (P<0.05). The haptoglobin concentration decreased during the first 5 weeks after weaning in all groups independent of the castration, weaning group or its interaction (P>0.05). WEA groups showed an increased average daily gain (ADG) during weeks 0 to 3 and a reduced ADG during 4 to 7 weeks in comparison with CON animals. At slaughter, bulls were about 80 kg heavier than castrates and had a superior dressing percentage and carcass classification (P>0.05). In conclusion, weaning had a greater effect on the number of vocalizations, standing/walking and lying behaviour and ADG compared with Burdizzo castration. In comparison with undertaking the procedures separately, concurrent castration and weaning neither affected behaviour and haematological parameters nor impaired performance. There was no evidence that the concurrent application of both treatments markedly increased the stress response compared with their application at intervals of a few weeks.
Although a few studies consider the sustainability of animal farming systems along the three classical main pillars (economy, environment and society), most studies on pig farming systems address only one of these pillars. The present paper is the introduction to a series of companion papers presenting the results of a study undertaken within the EU-supported project Q-PorkChains, aiming at building a comprehensive tool for the evaluation of pig farming systems, which is robust to accommodate the large variability of systems existing in Europe. The tool is mostly based on questions to farmers and comprises a total of 37 dimensions distributed along eight themes: Animal Welfare, Animal Health, Breeding Programmes, Environmental Sustainability, Meat Safety, Market Conformity, Economy and Working Conditions. The paper describes the procedure that was used for building the tool, using it on 15 contrasted pig farming systems and analysing the results. The evaluated systems are briefly described and a short overview of the dimensions is provided. Detailed descriptions of the theme-wise tools and results, as well as the results of an integrated evaluation, are available in the companion papers.
The aim of this paper is to present an approach for an integrated evaluation of the sustainability of pig farming systems, taking into account the three classical pillars: economy, environment and society. Eight sustainability themes were considered: Animal Welfare (AW), Animal Health (AH), Breeding Programmes (BP), Environment (EN), Meat Safety (MS), Market Conformity (MC), Economy (EC) and Working Conditions (WC). A total of 37 primary indicators were identified and used for the evaluation of 15 much contrasted pig farming systems in five EU countries. The results show that the eight themes were not redundant and all contributed to the observed variation between systems. The tool was very robust for highlighting the strengths and weaknesses of the systems along the eight themes that were considered. The number of primary indicators could be reduced from 37 to 18 with limited impact on the strengths/weaknesses profile of the individual systems. Integrating the eight theme evaluations into a single sustainability score is based on hypotheses or presumptions on the relative weights that should be given to the eight themes, which are very dependent on the context and on the purpose of the users of the tool. Therefore, the present paper does not have the ambition to provide a ready-for-use tool, rather to suggest an approach for the integrated evaluation of the sustainability of pig farming systems.
The sustainability of breeding activities in 15 pig farming systems in five European countries was evaluated. One conventional and two differentiated systems per country were studied. The Conventional systems were the standard systems in their countries. The differentiated systems were of three categories: Adapted Conventional with focus on animal welfare, meat quality or environment (five systems); Traditional with local breeds in small-scale production (three systems) and Organic (two systems). Data were collected with a questionnaire from nine breeding organisations providing animals and semen to the studied farming systems and from, on average, five farmers per farming system. The sustainability assessment of breeding activities was performed in four dimensions. The first dimension described whether the market for the product was well defined, and whether the breeding goal reflected the farming system and the farmers’ demands. The second dimension described recording and selection procedures, together with genetic change in traits that were important in the system. The third dimension described genetic variation, both within and between pig breeds. The fourth dimension described the management of the breeding organisation, including communication, transparency, and technical and human resources. The results show substantial differences in the sustainability of breeding activities, both between farming systems within the same category and between different categories of farming systems. The breeding activities are assessed to be more sustainable for conventional systems than for differentiated systems in three of the four dimensions. In most differentiated farming systems, breeding goals are not related to the system, as these systems use the same genetic material as conventional systems. The breeds used in Traditional farming systems are important for genetic biodiversity, but the small scale of these systems renders them vulnerable. It is hoped that, by reflecting on different aspects of sustainability, this study will encourage sustainable developments in pig production.
A total of 3200 milk samples from Holstein and Jersey cows were analysed for free glucose and glucose-6-phosphate (G6P) by an enzymatic-fluorometric method that requires no pre-treatment. The cows were primiparous as well as multiparous, and samples were taken throughout the entire lactation period. In addition, lactose, protein, fat, citrate and β-hydroxybutyrate were determined and comparisons between these variables were made. Data were analysed using GLM model for the effect of parity, breed, time from last milking and stage of lactation on variations in parameters in milk. Pearson’s correlations were generated between milk variables. P<0.05 was considered significant. Concentration of free glucose and G6P were on average 331 and 81 μM, respectively. Time from last milking (stay in the gland cistern) did not increase the concentration of these monosaccharides, indicating that they are not hydrolysis product from lactose post secretion, but rather reflecting the energy status of the mammary epithelial cells pre-secretion. Wide variation in range of these metabolites, that is, from 90 to 630 μM and 5 to 324 μM, for glucose and G6P, respectively, was observed. During the first 21 weeks in milk, free glucose increased whereas G6P decreased. Concentration of free glucose in milk is greater for primiparous than multiparous cows and greater for Holstein than Jersey cows. Concentration of G6P was not affected by parity or breed. The use of free glucose and G6P as indicators of physiological conditions and risk of disease is warranted for use as potential biomarkers for in-line surveillance systems on-farm.
The Welfare Quality® protocols provide a multidimensional assessment of welfare, which is lengthy, and hence limited in terms of practicality. The aim of this study was to investigate potential ‘iceberg indicators’ which could reliably predict the overall classification as a means of reducing the length of time for an assessment and so increase the feasibility of the Welfare Quality® protocol as a multidimensional assessment of welfare. Full Welfare Quality® assessments were carried out on 92 dairy farms in England and Wales. The farms were all classified as Acceptable or Enhanced. Logistic regression models with cross validation were used to compare model fit for the overall classification on farms. ‘Absence of prolonged thirst’, on its own, was found to correctly classify farms 88% of the time. More generally, the inclusion of more measures in the models was not associated with greater predictive ability for the overall classification. Absence of prolonged thirst could thus, in theory, be considered to be an iceberg indicator for the Welfare Quality® protocol, and could reduce the length of time for a farm assessment to 15 min. Previous work has shown that the parameters within the Welfare Quality® protocol are important and relevant for welfare assessment. However, it is argued that the credibility of the published aggregation system is compromised by the finding that one resource measure (Absence of prolonged thirst) is a major driver for the overall classification. It is therefore suggested that the prominence of Absence of prolonged thirst in this role may be better understood as an unintended consequence of the published measure aggregation system rather than as reflecting a realistic iceberg indicator.
This study assessed the long-term effects of feeding diets containing either a gelling fibre (alginate (ALG)), or a fermentable fibre (resistant starch (RS)), or both, on feeding patterns, behaviour and growth performance of growing pigs fed ad libitum for 12 weeks. The experiment was set up as a 2×2 factorial arrangement: inclusion of ALG (yes or no) and inclusion of RS (yes or no) in the control diet, resulting in four dietary treatments, that is, ALG−RS− (control), ALG+RS−, ALG−RS+, and ALG+RS+. Both ALG and RS were exchanged for pregelatinized potato starch. A total of 240 pigs in 40 pens were used. From all visits to an electronic feeding station, feed intake and detailed feeding patterns were calculated. Apparent total tract digestibility of energy, dry matter (DM), and CP was determined in week 6. Pigs’ postures and behaviours were scored from live observations in weeks 7 and 12. Dietary treatments did not affect final BW and average daily gain (ADG). ALG reduced energy and DM digestibility (P<0.01). Moreover, ALG increased average daily DM intake, and reduced backfat thickness and carcass gain : digestible energy (DE) intake (P<0.05). RS increased feed intake per meal, meal duration (P<0.05) and inter-meal intervals (P=0.05), and reduced the number of meals per day (P<0.01), but did not affect daily DM intake. Moreover, RS reduced energy, DM and CP digestibility (P<0.01). Average daily DE intake was reduced (P<0.05), and gain : DE intake tended to be increased (P=0.07), whereas carcass gain : DE intake was not affected by RS. In week 12, ALG+RS− increased standing and walking, aggressive, feeder-directed, and drinking behaviours compared with ALG+RS+ (ALG×RS interaction, P<0.05), with ALG−RS− and ALG−RS+ in between. No other ALG×RS interactions were found. In conclusion, pigs fed ALG compensated for the reduced dietary DE content by increasing their feed intake, achieving similar DE intake and ADG as control pigs. Backfat thickness and carcass efficiency were reduced in pigs fed ALG, which also showed increased physical activity. Pigs fed RS changed feeding patterns, but did not increase their feed intake. Despite a lower DE intake, pigs fed RS achieved similar ADG as control pigs by increasing efficiency in DE use. This indicates that the energy utilization of RS in pigs with ad libitum access to feed is close to that of enzymatically digestible starch.
Toxoplasmosis is one of the five parasitic diseases considered as a priority for public health action. The consumption of raw milk products represents a possible risk, in particular for certain categories of people. The aim of this study was to evaluate the possible effects of Toxoplasma gondii on milk yield and quality in sero-positive animals with parasitemia. Eighteen healthy lactating Amiata jennies, between 90 and 180 days were included in the study. Four donkeys scored positive for immunofluorescent antibody test (IFAT), and each IFAT positive donkey presented parasitic DNA both in the blood and milk. No significant differences were found between milk yield in PCR-positive donkeys compared with the negative cases, however the former tended to have a greater production. Milk quality in the positive donkeys showed a significantly lower percentage of casein (0.72% v. 0.81%) and ash (0.32% v. 0.37%). Positive cases had a highly significant larger average diameter of globules (2.35 µm) and fewer globules/ml (2.39×108). Somatic cell and bacterial counts were normal and in agreement with the literature. Toxoplasma gondii did not seem to present clinical forms in lactating jennies. Further in vivo studies are needed to further assess the risk of T. gondii transmission through donkey milk, together with the impact of different stages of infection on milk quality.
Selection programs have enabled broiler chickens to gain muscle mass without similar enlargement of the cardiovascular and respiratory systems that are essential for thermoregulatory efficiency. Meat-type chickens cope with high ambient temperature by reducing feed intake and growth during chronic and moderate heat exposure. In case of acute heat exposure, a dramatic increase in morbidity and mortality can occur. In order to alleviate heat stress in the long term, research has recently focused on early thermal manipulation. Aimed at stimulation of long-term thermotolerance, the thermal manipulation of embryos is a method based on fine tuning of incubation conditions, taking into account the level and duration of increases in temperature and relative humidity during a critical period of embryogenesis. The consequences of thermal manipulation on the performance and meat quality of broiler chickens have been explored to ensure the potential application of this strategy. The physiological basis of the method is the induction of epigenetic and metabolic mechanisms that control body temperature in the long term. Early thermal manipulation can enhance poultry resistance to environmental changes without much effect on growth performance. This review presents the main strategies of early heat exposure and the physiological concepts on which these methods were based. The cellular mechanisms potentially underlying the adaptive response are discussed as well as the potential interest of thermal manipulation of embryos for poultry production.
Daily methane production and feed intake were measured on 160 adult ewes, which were the progeny of 20 sires and 3 sire types (Merino, dual-purpose and terminal) from a genetically diverse flock. All animals were housed in individual pens and fed a 50/50 mix of chaffed lucerne and oaten hays at 20 g/kg liveweight (LW), with feed refusals measured for at least 10 days before the first of three 22-h measurements in respiration chambers (RC). Feed was withdrawn at 1600 h on the day before each RC test to encourage the ewes to eat the entire ration provided for them in the RC. After the first 1-day RC test, the sheep were returned to their pens for a day, then given a second 1-day RC test, followed by another day in their pens, then a third RC test. After all animals had been tested, they were ranked according to methane emissions adjusted for feed intake in the RC and on the previous day, enabling 10 low and 10 high methane animals to be chosen for repeat measurement. No variation between sires nor consistent effects of LW on feed eaten (%FE, expressed as per cent of feed offered) was evident in the 10 days before the first RC measurement. However, significant differences between sires (equivalent to an estimated heritability of 41%) were identified for %FE during the 2nd and 3rd days of RC testing (2 and 4 days after the initial RC test). The analysis of all data showed that methane emissions in the RC were related to feed intake on the day of testing and the two previous days (all P<0.0005). Before correcting for feed intake on previous days, there was some variation between sires in methane yield, equivalent to an estimated heritability of 9%. Correction for feed intake on the 2 previous days halved the residual variation, allowing other effects to be detected, including effects of LW, twins reared as singles, test batch, RC and test-day effects, but estimated sire variation fell to zero. In order to avoid potential biases, statistical models of methane emissions in the RC need to consider potential confounding factors, such as those identified as significant in this study.
The horse’s hindgut bacterial ecosystem has often been studied using faecal samples. However few studies compared both bacterial ecosystems and the validity of using faecal samples may be questionable. Hence, the present study aimed to compare the structure of the equine bacterial community in the hindgut (caecum, right ventral colon) and faeces using a fingerprint technique known as Automated Ribosomal Intergenic Spacer Analysis (ARISA). Two DNA extraction methods were also assessed. Intestinal contents and faeces were sampled 3 h after the morning meal on four adult fistulated horses fed meadow hay and pelleted concentrate. Irrespective of the intestinal segment, Principal Component Analysis of ARISA profiles showed a strong individual effect (P<0.0001). However, across the study, faecal bacterial community structure significantly (P<0.001) differed from those of the caecum and colon, while there was no difference between the two hindgut communities. The use of a QIAamp® DNA Stool Mini kit increased the quality of DNA extracted irrespective of sample type. The differences observed between faecal and hindgut bacterial communities challenge the use of faeces as a representative for hindgut activity. Further investigations are necessary to compare bacterial activity between the hindgut and faeces in order to understand the validity of using faecal samples.
A total of 320 male Arbor Acres broiler chickens (28 days old) were randomly allotted to one of the three experimental diets supplemented with 0 (160 birds), 600 (80 birds) or 1200 mg/kg (80 birds) creatine monohydrate (CMH) for 14 days. On the morning of 42 day, after an 8-h fast, the birds of CMH-free group were divided into two equal groups, and all birds of these four groups were transported according to the follow protocol: 0.75-h transport without CMH supplementation (as a lower stress control group), 3-h transport without CMH supplementation, 3-h transport with 600 or 1200 mg/kg CMH supplementation. Each treatment group was composed of 8 replicates with 10 birds each. The results showed that supplementation of CMH for 14 days before slaughter did not affect the overall growth performance and carcass traits of stressed broilers (P>0.05). A 3-h transport decreased plasma glucose concentration, elevated plasma corticosterone concentration, increased bird live weight loss, breakdown of muscle glycogen, as well as the accumulation of muscle lactate (P<0.05), which induced some detrimental changes to breast meat quality (lower ultimate pH and higher drip loss, P<0.05). Nevertheless, supplementation of 1200 mg/kg CMH reduced chicken weight loss, decreased the contents of lactate and glycolytic potential in pectoralis major of 3-h transported broilers (P<0.05), which is beneficial to maintain breast meat quality by reducing the drip loss (P<0.05). These findings suggest that the reduction of muscle glycolysis is probably the reason for maintainance of meat quality by supplementation of CMH in transported broilers.
Body condition scoring is a common tool to assess the subcutaneous fat reserves of dairy cows. Because of its subjectivity, which causes limits in repeatability, it is often discussed controversially. Aim of the current study was to evaluate the impact of considering the cows overall appearance on the scoring process and on the validity of the results. Therefore, two different methods to reveal body condition scores (BCS), ‘independent BCS’ (iBCS) and ‘dependent BCS’ (dBCS), were used to assess 1111 Swiss Brown Cattle. The iBCS and the dBCS systems were both working with the same flowchart with a decision tree structure for visual and palpatory assessment using a scale from 2 to 5 with increment units of 0.25. The iBCS was created strictly complying with the defined frames of the decision tree structure. The system was chosen due to its formularized approach to reduce the influence of subjective impressions. By contrast, the dBCS system, which was in line with common practice, had a more open approach, where – besides the decision tree – the overall impression of the cow’s physical appearance was taken into account for generating the final score. Ultrasound measurement of the back fat thickness (BFT) was applied as a validation method. The dBCS turned out to be the better predictor of BFT, explaining 67.3% of the variance. The iBCS was only able to explain 47.3% of the BFT variance. Within the whole data set, only 31.3% of the animals received identical dBCS and iBCS. The pin bone region caused the most deviations between dBCS and iBCS, but also assessing the pelvis line, the hook bones and the ligaments led to divergences in around 20% of the scored animals. The study showed that during the assessment of body condition a strict adherence to a decision tree is a possible source of inexact classifications. Some body regions, especially the pin bones, proved to be particularly challenging for scoring due to difficulties in assessing them. All the more, the inclusion of the overall appearance of the cow into the assessment process counteracted these errors and led to a fair predictability of BFT with the flowchart-based BCS. This might be particularly important, if different cattle types and breeds are assessed.
Individual drinking patterns are a potential tool for disease monitoring in pigs. However, to date, individual pig drinking behaviour has not been described, and effects of external factors have not been examined. The aim of this study was to perform detailed quantification of drinking behaviour of growing pigs and to examine effects of period of day and effects of competition for access to the drinking nipple on the drinking behaviour, amount of water used and water wastage. In all, 52 cross-bred castrated male pigs (live weight 20.5±1.7 kg; mean±s.d.) maintained as either 3 (N3) or 10 (N10) pigs per pen and water nipple (four groups/treatment) were used. All pigs were fitted with a transponder ear tag. A radio frequency identification reader recorded and time stamped visits at the nipple. In each pen, water flow was logged every second. The drinking behaviour was recorded for 4 consecutive days and analysed using a linear mixed model. Overall, the pigs spent 594 s at the nipple during 24 h distributed among 44 visits. During this period, 5 l of water were used, of which >30% was wasted. Social competition did not affect the drinking behaviour over 24 h, except for the proportion of interrupted visits where pigs, kept with recommended nipple availability (N10), showed an increased proportion of interrupted drinking bouts compared with pigs kept at very low level of competition (N3) (0.18±0.01 v. 0.11±0.01; P<0.01). However, splitting data into 8-h periods (P1, P2, P3) starting from 0600 h revealed differences between treatments, showing that in N3, water use per visit was lower in P1 than P2 and P3 (110±10 v. 126±7 and 132±7 ml; P<0.05), whereas in N10, the water used per visit was higher during P3 than during the other periods (P1: 107±14 ml, P2: 112±10 ml v. P3: 151±10 ml; P<0.001). A similar pattern was found for visit duration. In N3, fewer nipple visits were observed in P2 than P1 (15.6±1.2 v. 22.0±1.2; P<0.001), whereas no difference was found between P1 and P2 in N10. The results demonstrate that growing pigs at the two levels of competition maintained a comparable level of 24 h water intake by changing behavioural variables involved in drinking. This dynamic characteristic of drinking behaviour means that if individual drinking patterns are to be used as disease monitoring tools, it is important to consider effects of external factors and include data on period level to allow rapid detection of behavioural changes.
The assessment of animal welfare can include resource-based or animal-based measures. Official animal welfare inspections in Denmark primarily control compliance with animal welfare legislation based on resource measures (e.g. housing system) and usually do not regard animal response parameters (e.g. clinical and behavioural observations). Herds selected for welfare inspections are sampled by a risk-based strategy based on existing register data. The aim of the present study was to evaluate register data variables as predictors of dairy herds with violations of the animal welfare legislation (VoAWL) defined as occurrence of at least one of the two most frequently violated measures found at recent inspections in Denmark, namely (a) presence of injured animals not separated from the rest of the group and/or (b) animals in a condition warranting euthanasia still being present in the herd. A total of 25 variables were extracted from the Danish Cattle Database and assessed as predictors using a multivariable logistic analysis of a data set including 73 Danish dairy herds, which all had more than 100 cows and cubicle loose-housing systems. Univariable screening was used to identify variables associated with VoAWL at a P-value<0.2 for the inclusion in a multivariable logistic regression analysis. Backward selection procedures identified the following variables for the final model predictive of VoAWL: increasing standard deviation of milk yield for first lactation cows, high bulk tank somatic cell count (⩾250 000 cells/ml) and suspiciously low number of recorded veterinary treatments (⩽25 treatments/100 cow years). The identified predictors may be explained by underlying management factors leading to impaired animal welfare in the herd, such as poor hygiene, feeding and management of dry or calving cows and sick animals. However, further investigations are required for causal inferences to be established.