Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-18T13:42:45.407Z Has data issue: false hasContentIssue false

Response of growing ruminants to diet in warm climates: a meta-analysis

Published online by Cambridge University Press:  20 January 2015

N. Salah
Affiliation:
INRA, UR143, Unité de Recherches Zootechniques, Prise d’Eau, 97170 Petit-bourg, Guadeloupe INRA, UMR791 Modélisation Systémique Appliquée aux Ruminants, 16 rue Claude Bernard, 75005 Paris, France
D. Sauvant
Affiliation:
INRA, UMR791 Modélisation Systémique Appliquée aux Ruminants, 16 rue Claude Bernard, 75005 Paris, France
H. Archimède*
Affiliation:
INRA, UR143, Unité de Recherches Zootechniques, Prise d’Eau, 97170 Petit-bourg, Guadeloupe
*
Get access

Abstract

The aim of this work was to establish the response of growing sheep, goats and cattle to different nutritional environments. Data from 590 publications representing 2225 treatments were analysed. The results showed that each 10% increase in NDF was accompanied by 0.11 g/kg live weight (LW) and 0.32 g/kg metabolic live weight (LW0.75) decreases in DMI. Otherwise, the response of DMI to CP (CP%DM) content was curvilinear (P<0.01), without any significant difference in the slope between species. The percentage of concentrate (% CC) affected DMI curvilinearly, without any significant difference between species. This meta-analysis demonstrated the negative linear effect of NDF and the quadratic effect of CP concentration on organic matter digestibility (OMd). For growth performance, the three species responded curvilinearly to variations in metabolisable energy intake (MEI MJ/kg LW0.75) and digestible CP (DCPI g/kg LW0.75) intake (P<0.01). At the same level of MEI, average daily gain (ADG) varied with CP contents of the diet, and only the intercept differences were significant between the three levels (P=0.07). At the same level of DCPI, ADG varied with energy level (below maintenance (LE−−), 1 to 1.2×maintenance (LE−), 1.2 to 1.4× maintenance (ME+−), and >1.4, corresponding to maximum growth (HE+)). No significant difference was observed between LE−− and LE−, and no significant difference was observed between ME+− and HE+. For nitrogen balance, no difference was observed between species for a given level of nitrogen intake.

Type
Review Article
Copyright
© The Animal Consortium 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agabriel, J, Pomiès, D, Nozière, M-O and Faverdin, P 2007. Principes de rationnement des ruminants. In Alimentation des bovins, des ovins et des caprins. Besoins des animaux- valeurs des aliments (ed. INRA Quae), pp. 911. INRA Publication, Versailles.Google Scholar
Agle, M, Hristov, AN, Zaman, S, Schneider, C, Ndegwa, PM and Vaddella, VK 2010. Effect of dietary concentrate on rumen fermentation, digestibility, and nitrogen losses in dairy cows. Journal of Dairy Science 93, 42114222.CrossRefGoogle ScholarPubMed
Allen, MS 2000. Effects of diet on short-term regulation on feed intake by lactating dairy cattle. Journal of Dairy Science 83, 15981624.CrossRefGoogle ScholarPubMed
Archibeque, SL, Freetly, HC and Ferrell, CL 2007. Net portal and hepatic flux of nutrients in growing wethers fed high concentrate diets with oscillating protein concentrations. Journal of Animal Science 85, 9971005.CrossRefGoogle ScholarPubMed
Arelovich, HM, Abney, CS, Vizcarra, JA and Galyean, PML 2008. Effects of dietary neutral detergent fiber on intakes of dry matter and net energy by dairy and beef cattle: analysis of published data. The Professional Animal Scientist 24, 375383.CrossRefGoogle Scholar
Assoumaya, C, Sauvant, D and Archimède, H 2007. Etude comparative de l’ingestion et de la digestion des fourrages tropicaux et tempérés. INRA Productions Animales 20, 383392.Google Scholar
Castillo, AR, Kebreab, E, Beever, DE and France, J 2000. A review of efficiency of nitrogen utilisation in lactating dairy cows and its relationship with environmental pollution. Journal of Animal and Feed Science 9, 132.CrossRefGoogle Scholar
Demarquilly, C and Andrieu, J 1992. Composition chimique, digestibilité et ingestibilité des fourrages européens exploités en vert. INRA Productions Animales 5, 213221.CrossRefGoogle Scholar
Dulphy, JP, Jouany, JP, Rosset-Martin, W and Thériez, M 1994. Aptitudes compares de différentes espèces d’herbivores domestiques à ingérer et digérer des fourrages distribués à l’auge. Annales de Zootechnie 73, 1132.CrossRefGoogle Scholar
Fenderson, CL and Bergen, WG 1976. Effect of excess dietary protein on feed intake and nitrogen metabolism in steer. Journal of Animal Science 42, 13221330.CrossRefGoogle Scholar
Haddad, SG, Nasr, RE and Muwalla, MM 2001. Optimum dietary crude protein level for finishing Awassi lambs. Small Ruminant Research 39, 4146.CrossRefGoogle ScholarPubMed
Huhtanen, P, Nousiainen, JI, Rinne, M, Kytola, K and Khalili, H 2008. Utilization and partitioning of dietary nitrogen in dairy cows fed grass silage based diets. Journal of Dairy Science 91, 35893599.CrossRefGoogle ScholarPubMed
Hwangbo, S, Choi, SH, Kim, SW, Son, DS, Park, HS, Lee, SH and Jo, IKH 2009. Effects of crude protein levels in total mixed rations on growth performance and meat quality in growing Korean Black goats. Asian Australian Journal of Animal Science 22, 11331139.CrossRefGoogle Scholar
Institut Nationale de la Recherche Agronomique (INRA) 1989. Ruminant nutrition. Recommended, allowances and feed tables (ed. R Jarrige), 389 pp. INRA, Paris, France.Google Scholar
Isaksson, B and Sjogren, B 1967. A critical evaluation of the mineral and nitrogen balances in man. Proceedings of the Nutrition Society 26, 106116.CrossRefGoogle Scholar
Kebreab, E, Strathe, AB, Dijkstra, J, Mills, JAN, Reynolds, CK, Crompton, LA, Yan, T and France, J 2010. Energy and protein interactions and their effect on nitrogen excretion in dairy cows. Paper presented at the 3rd EAAP International Symposium on Energy and Protein Metabolism and Nutrition, Parma, September 6 to 10, Parma, Italy, pp. 417–425.Google Scholar
Kohn, RA, Dinneen, M and Russek-Cohen, E 2005. Using blood urea nitrogen to predict nitrogen excretion and efficiency of nitrogen utilization in cattle, sheep, goats, horses, pigs and rats. Journal of Animal Science 83, 879889.CrossRefGoogle Scholar
Kioumarsi, H, Korshidi, JK, Zahedifar, M and Seidavi, AR 2008. The effect of dietary energy and protein level on performance, efficiency and carcass characteristics of Taleshi lambs. Asian Journal of Animal and Veterinary Advances 3, 307313.CrossRefGoogle Scholar
Lammers, BP and Heinrichs, AJ 2000. The response of altering the ration of dietary protein to energy on growth, feed efficiency, and mammary development in rapidly growing prepubertal heifers. Journal of Dairy Science 83, 977983.CrossRefGoogle Scholar
Loncke, C, Ortigues-Marty, I, Vernet, J, Lapierre, H, Sauvant, D and Nozière, P 2009. Empirical prediction of net portal appearance of volatile fatty acids, glucose, and their secondary metabolites (ß-hydroxybutyrate, lactate) from dietary characteristics in ruminants: a meta-analysis approach. Journal of Animal Science 87, 253268.CrossRefGoogle Scholar
Lu, CD and Potchoiba, MJ 1990. Feed intake and weight gain of growing goats fed diets of various energy and protein levels. Journal of Animal Science 68, 17511759.CrossRefGoogle ScholarPubMed
Mahgoub, O, Lu, CD and Early, EJ 2000. Effects of dietary energy density on feed intake, body weight gain and carcass chemical composition of Omani growing lambs. Small Ruminant Research 37, 3542.CrossRefGoogle ScholarPubMed
Medina, JVC, Ku-Vera, JC and Magana-Monforte, G 2010. Estimation of metabolizable energy requirement for maintenance and energetic efficiency of weight gain in Bos Taurus and Bos indicus cows in tropical Mexico. Journal of Animal and Veterinary Advances 9, 421428.Google Scholar
Meyer, K, Hummel, J and Clauss, M 2010. The relationship between forage cell wall content and voluntary food intake in mammalian herbivores. Mammal Review 40, 221245.Google Scholar
Moore, JE, Goetsch, AL, Luo, J, Owens, FN, Galyean, ML, Johnson, ZB, Sahlu, T and Ferrell, CL 2004. Prediction of fecal crude protein excretion of goats. Small Ruminant Research 53, 275292.CrossRefGoogle Scholar
Nolan, JV and Leng, RA 1983. Nitrogen metabolism in the rumen and its measurement. In Nuclear techniques for assessing and improving ruminant feeds (ed. IAEA Publishing Aerie), pp. 4365. IAEA, Vienne.Google Scholar
Nousiainen, J, Rinne, M and Huhtanen, P 2008. A meta-analysis of feed digestion in dairy cows. 1. The effects of forage and concentrate factors on total diet digestibility. Journal of Dairy Science 92, 50195030.CrossRefGoogle Scholar
Nozière, P, Glasser, F and Sauvant, D 2011. In vivo production and molar percentages of volatile fatty acids in the rumen: a quantitative review by an empirical approach. Animal 5, 403414.CrossRefGoogle ScholarPubMed
Rattray, PV and Joyce, JP 1970. The nutritive value of white clover and perennial ryegrass for young sheep.1. Nitrogen retention studies and associated animal performance. New Zeland Journal of Agricultural Research 13, 778791.CrossRefGoogle Scholar
Roffler, RE, Wray, JE and Satter, LD 1986. Production responses in early lactation to additions of soybean meal to diets containing predominantly corn silage. Journal of Dairy Science 69, 10551062.CrossRefGoogle ScholarPubMed
Salah, N, Sauvant, D and Archimede, H 2014. Nutritional requirements of sheep, goats and cattle in warm climates. A meta-analysis. Animal 8, 14391447.CrossRefGoogle ScholarPubMed
Sauvant, D 1992. La modélisation systémique en nutrition. Reproduction Nutrition Development 32, 217230.CrossRefGoogle Scholar
Sauvant, D and Nozière, P 2013. La quantification des principaux phénomènes digestifs chez les ruminants: les relations utilisées pour rénover les systèmes d’unités d’alimentation énergétique et protéique. INRA Productions Animales 26, 327346.CrossRefGoogle Scholar
Sauvant, D, Cantalapiedra-Hijar, G and Nozière, P 2014. Updating protein requirements in ruminants, application to the determination of the responses of lactating femelles to metabolisable protein supply (French PDI). Rencontre Recherche Ruminants. http://www.journees3r.fr/spip.php?article3802 Google Scholar
Sauvant, D, Schmidely, P, Daudin, JJ and St-Pierre, NR 2008. Meta-analysis of experimental data in animal nutrition. Animal 2, 12031214.CrossRefGoogle ScholarPubMed
Sauvant, D and Giger-Reverdin, S 2009. Les variations du bilan carbone des ruminants d'elevage. Rencontre Recherche Ruminant. http://www.journees3r.fr/IMB/pdf/2009_06_02_Souvant.pdf Google Scholar
Shahzad, MA, Tauquir, NA, Fayyaz, A, Niza, MU, Sarwar, M and Tipu, MA 2011. Effects of feeding different dietary protein and energy levels on the performance of 12-15-month-old buffalo calves. Tropical Animal Health and Production 43, 685694.CrossRefGoogle ScholarPubMed
Sultan, JI, Javaid, A and Aslam, M 2010. Nutrient digestibility and feedlot performance of lambs fed diets varying protein and energy content. Tropical Animal Health and Production 42, 941946.CrossRefGoogle Scholar
Titi, HH, Tabaa, MJ, Amasheh, MG, Barakeh, F and Daqamseh, B 2000. Comparative performance of Awassi lambs and Black goat kids on different crude protein levels in Jordan. Small Ruminant Research 37, 131135.CrossRefGoogle ScholarPubMed
Weiss, WP, Willett, LB, St-Pierre, NR, Borger, DC, McKelvey, TR and Wyatt, DJ 2009. Varying forage type, metabolizable protein concentration, and carbohydrate source affects manure excretion, manure ammonia, and nitrogen metabolism of dairy cows. Journal of Dairy Science 92, 56075619.CrossRefGoogle ScholarPubMed
Wilson, JR and Minson, DJ 1980. Prospects for improving the digestibility and intake of tropical grasses. Tropical Grasslands 14, 253259.Google Scholar
Yan, T, Frost, JP, Agnew, RE, Binnie, RC and Mayne, CS 2006. Relationships among manure nitrogen output and dietary and animal factors in lactating dairy Cows. Journal of Dairy Science 89, 39813991.CrossRefGoogle ScholarPubMed
Zanton, GI and Heinrichs, AJ 2008. Analysis of nitrogen utilization and excretion in growing dairy cattle. Journal of Dairy Science 91, 15191533.CrossRefGoogle ScholarPubMed