Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T03:23:43.611Z Has data issue: false hasContentIssue false

MicroRNAs in farm animals

Published online by Cambridge University Press:  03 July 2013

X. Wang
Affiliation:
Department of Life Science and Technology, Changshu Institute of Technology, Changshu 215500, P R China College of Animal Science and Technology, Yangzhou University, Yangzhou 225509, P R China
Z. Gu*
Affiliation:
Department of Life Science and Technology, Changshu Institute of Technology, Changshu 215500, P R China
H. Jiang*
Affiliation:
Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
Get access

Abstract

MicroRNAs (miRNAs) are a class of ∼22 nucleotide-long small noncoding RNAs that target mRNAs for translational repression or degradation. miRNAs target mRNAs by base-pairing with the 3′-untranslated regions (3′-UTRs) of mRNAs. miRNAs are present in various species, from animals to plants. In this review, we summarize the identification, expression, and function of miRNAs in four important farm animal species: cattle, chicken, pig and sheep. In each of these species, hundreds of miRNAs have been identified through homology search, small RNA cloning and next generation sequencing. Real-time RT-PCR and microarray experiments reveal that many miRNAs are expressed in a tissue-specific or spatiotemporal-specific manner in farm animals. Limited functional studies suggest that miRNAs have important roles in muscle development and hypertrophy, adipose tissue growth, oocyte maturation and early embryonic development in farm animals. Increasing evidence suggests that single-nucleotide polymorphisms in miRNA target sites or miRNA gene promoters may contribute to variation in production or health traits in farm animals.

Type
Breeding and genetics
Copyright
Copyright © The Animal Consortium 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abd El Naby, WS, Hagos, TH, Hossain, MM, Salilew-Wondim, D, Gad, AY, Rings, F, Cinar, MU, Tholen, E, Looft, C, Schellander, K, Hoelker, M, Tesfaye, D 2011. Expression analysis of regulatory microRNAs in bovine cumulus oocyte complex and preimplantation embryos. Zygote 11, 121.Google Scholar
Bannister, SC, Tizard, ML, Doran, TJ, Sinclair, AH, Smith, CA 2009. Sexually dimorphic microRNA expression during chicken embryonic gonadal development. Biology of Reproduction 81, 165176.Google Scholar
Bartel, DP 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281297.Google Scholar
Berry, C, Thomas, M, Langley, B, Sharma, M, Kambadur, R 2002. Single cysteine to tyrosine transition inactivates the growth inhibitory function of Piedmontese myostatin. American Journal of Physiology Cell Physiology 283, C135C141.Google Scholar
Bovine Genome Sequencing and Analysis Consortium 2009. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 324, 522528.Google Scholar
Bueno, MJ, Perez de Castro, I, Gomez de Cedron, M, Santos, J, Calin, GA, Cigudosa, JC, Croce, CM, Fernandez-Piqueras, J, Malumbres, M 2008. Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell 13, 496506.CrossRefGoogle ScholarPubMed
Burnside, J, Morgan, R 2011. Emerging roles of chicken and viral microRNAs in avian disease. BMC Proceedings 5 (suppl. 4), S2.Google Scholar
Caiment, F, Charlier, C, Hadfield, T, Cockett, N, Georges, M, Baurain, D 2010. Assessing the effect of the CLPG mutation on the microRNA catalog of skeletal muscle using high-throughput sequencing. Genome Research 20, 16511662.Google Scholar
Carthew, RW, Sontheimer, EJ 2009. Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642655.Google Scholar
Chen, C, Deng, B, Qiao, M, Zheng, R, Chai, J, Ding, Y, Peng, J, Jiang, S 2012a. Solexa sequencing identification of conserved and novel microRNAs in backfat of Large White and Chinese Meishan pigs. PLoS One 7, e31426.Google Scholar
Chen, KC, Liao, YC, Hsieh, IC, Wang, YS, Hu, CY, Juo, SH 2012b. OxLDL causes both epigenetic modification and signaling regulation on the microRNA-29b gene: novel mechanisms for cardiovascular diseases. Journal of Molecular and Cellular Cardiology 52, 587595.CrossRefGoogle ScholarPubMed
Cho, IS, Kim, J, Seo, HY, Lim do, H, Hong, JS, Park, YH, Park, DC, Hong, KC, Whang, KY, Lee, YS 2010. Cloning and characterization of microRNAs from porcine skeletal muscle and adipose tissue. Molecular Biology Reports 37, 35673574.Google Scholar
Cirera, S, Birck, M, Busk, PK, Fredholm, M 2010. Expression profiles of miRNA-122 and its target CAT1 in minipigs (Sus scrofa) fed a high-cholesterol diet. Comparative Medicine 60, 136141.Google Scholar
Clop, A, Marcq, F, Takeda, H, Pirottin, D, Tordoir, X, Bibe, B, Bouix, J, Caiment, F, Elsen, JM, Eychenne, F, Larzul, C, Laville, E, Meish, F, Milenkovic, D, Tobin, J, Charlier, C, Georges, M 2006. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nature Genetics 38, 813818.Google Scholar
Coutinho, LL, Matukumalli, LK, Sonstegard, TS, Van Tassell, CP, Gasbarre, LC, Capuco, AV, Smith, TP 2007. Discovery and profiling of bovine microRNAs from immune-related and embryonic tissues. Physiological Genomics 29, 3543.Google Scholar
Curry, E, Safranski, TJ, Pratt, SL 2011. Differential expression of porcine sperm microRNAs and their association with sperm morphology and motility. Theriogenology 76, 15321539.Google Scholar
Darnell, DK, Kaur, S, Stanislaw, S, Konieczka, JH, Yatskievych, TA, Antin, PB 2006. MicroRNA expression during chick embryo development. Developmental Dynamics 235, 31563165.Google Scholar
Davis, E, Caiment, F, Tordoir, X, Cavaille, J, Ferguson-Smith, A, Cockett, N, Georges, M, Charlier, C 2005. RNAi-mediated allelic trans-interaction at the imprinted Rtl1/Peg11 locus. Current Biology 15, 743749.Google Scholar
Easton, DF, Pooley, KA, Dunning, AM, Pharoah, PD, Thompson, D, Ballinger, DG, Struewing, JP, Morrison, J, Field, H, Luben, R, Wareham, N, Ahmed, S, Healey, CS, Bowman, R, Meyer, KB, Haiman, CA, Kolonel, LK, Henderson, BE, Le Marchand, L, Brennan, P, Sangrajrang, S, Gaborieau, V, Odefrey, F, Shen, CY, Wu, PE, Wang, HC, Eccles, D, Evans, DG, Peto, J, Fletcher, O, Johnson, N, Seal, S, Stratton, MR, Rahman, N, Chenevix-Trench, G, Bojesen, SE, Nordestgaard, BG, Axelsson, CK, Garcia-Closas, M, Brinton, L, Chanock, S, Lissowska, J, Peplonska, B, Nevanlinna, H, Fagerholm, R, Eerola, H, Kang, D, Yoo, KY, Noh, DY, Ahn, SH, Hunter, DJ, Hankinson, SE, Cox, DG, Hall, P, Wedren, S, Liu, J, Low, YL, Bogdanova, N, Schurmann, P, Dork, T, Tollenaar, RA, Jacobi, CE, Devilee, P, Klijn, JG, Sigurdson, AJ, Doody, MM, Alexander, BH, Zhang, J, Cox, A, Brock, IW, MacPherson, G, Reed, MW, Couch, FJ, Goode, EL, Olson, JE, Meijers-Heijboer, H, van den Ouweland, A, Uitterlinden, A, Rivadeneira, F, Milne, RL, Ribas, G, Gonzalez-Neira, A, Benitez, J, Hopper, JL, McCredie, M, Southey, M, Giles, GG, Schroen, C, Justenhoven, C, Brauch, H, Hamann, U, Ko, YD, Spurdle, AB, Beesley, J, Chen, X, Mannermaa, A, Kosma, VM, Kataja, V, Hartikainen, J, Day, NE, Cox, DR, Ponder, BA 2007. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447, 10871093.Google Scholar
Ebert, MS, Sharp, PA 2010. MicroRNA sponges: progress and possibilities. RNA 16, 20432050.Google Scholar
Ebert, MS, Neilson, JR, Sharp, PA 2007. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nature Methods 4, 721726.CrossRefGoogle ScholarPubMed
Ellinor, PT, Lunetta, KL, Glazer, NL, Pfeufer, A, Alonso, A, Chung, MK, Sinner, MF, de Bakker, PI, Mueller, M, Lubitz, SA, Fox, E, Darbar, D, Smith, NL, Smith, JD, Schnabel, RB, Soliman, EZ, Rice, KM, Van Wagoner, DR, Beckmann, BM, van Noord, C, Wang, K, Ehret, GB, Rotter, JI, Hazen, SL, Steinbeck, G, Smith, AV, Launer, LJ, Harris, TB, Makino, S, Nelis, M, Milan, DJ, Perz, S, Esko, T, Kottgen, A, Moebus, S, Newton-Cheh, C, Li, M, Mohlenkamp, S, Wang, TJ, Kao, WH, Vasan, RS, Nothen, MM, MacRae, CA, Stricker, BH, Hofman, A, Uitterlinden, AG, Levy, D, Boerwinkle, E, Metspalu, A, Topol, EJ, Chakravarti, A, Gudnason, V, Psaty, BM, Roden, DM, Meitinger, T, Wichmann, HE, Witteman, JC, Barnard, J, Arking, DE, Benjamin, EJ, Heckbert, SR, Kaab, S 2010. Common variants in KCNN3 are associated with lone atrial fibrillation. Nature Genetics 42, 240244.Google Scholar
Enright, AJ, John, B, Gaul, U, Tuschl, T, Sander, C, Marks, DS 2003. MicroRNA targets in Drosophila. Genome Biology 5, R1.Google Scholar
Gerin, I, Bommer, GT, McCoin, CS, Sousa, KM, Krishnan, V, MacDougald, OA 2010. Roles for miRNA-378/378* in adipocyte gene expression and lipogenesis. American Journal of Physiology Endocrinology and Metabolism 299, E198E206.Google Scholar
Giraldez, AJ, Mishima, Y, Rihel, J, Grocock, RJ, Van Dongen, S, Inoue, K, Enright, AJ, Schier, AF 2006. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 7579.Google Scholar
Glazov, EA, Cottee, PA, Barris, WC, Moore, RJ, Dalrymple, BP, Tizard, ML 2008. A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. Genome Research 18, 957964.CrossRefGoogle ScholarPubMed
Greenman, C, Stephens, P, Smith, R, Dalgliesh, GL, Hunter, C, Bignell, G, Davies, H, Teague, J, Butler, A, Stevens, C, Edkins, S, O'Meara, S, Vastrik, I, Schmidt, EE, Avis, T, Barthorpe, S, Bhamra, G, Buck, G, Choudhury, B, Clements, J, Cole, J, Dicks, E, Forbes, S, Gray, K, Halliday, K, Harrison, R, Hills, K, Hinton, J, Jenkinson, A, Jones, D, Menzies, A, Mironenko, T, Perry, J, Raine, K, Richardson, D, Shepherd, R, Small, A, Tofts, C, Varian, J, Webb, T, West, S, Widaa, S, Yates, A, Cahill, DP, Louis, DN, Goldstraw, P, Nicholson, AG, Brasseur, F, Looijenga, L, Weber, BL, Chiew, YE, DeFazio, A, Greaves, MF, Green, AR, Campbell, P, Birney, E, Easton, DF, Chenevix-Trench, G, Tan, MH, Khoo, SK, Teh, BT, Yuen, ST, Leung, SY, Wooster, R, Futreal, PA, Stratton, MR 2007. Patterns of somatic mutation in human cancer genomes. Nature 446, 153158.Google Scholar
Gu, Z, Eleswarapu, S, Jiang, H 2007. Identification and characterization of microRNAs from the bovine adipose tissue and mammary gland. FEBS Letters 581, 981988.Google Scholar
Guan, YJ, Yang, X, Wei, L, Chen, Q 2011. MiR-365: a mechanosensitive microRNA stimulates chondrocyte differentiation through targeting histone deacetylase 4. FASEB Journal 25, 44574466.Google Scholar
Guduric-Fuchs, J, O'Connor, A, Cullen, A, Harwood, L, Medina, RJ, O'Neill, CL, Stitt, AW, Curtis, TM, Simpson, DA 2012. Deep sequencing reveals predominant expression of miR-21 amongst the small non-coding RNAs in retinal microvascular endothelial cells. Journal of Cellular Biochemistry 113, 20982111.Google Scholar
Guillon-Munos, A, Dambrine, G, Richerioux, N, Coupeau, D, Muylkens, B, Rasschaert, D 2010. The chicken miR-150 targets the avian orthologue of the functional zebrafish MYB 3'UTR target site. BMC Molecular Biology 11, 67.Google Scholar
Guo, HS, Xie, Q, Fei, JF, Chua, NH 2005. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for arabidopsis lateral root development. The Plant Cell 17, 13761386.Google Scholar
Hicks, JA, Trakooljul, N, Liu, HC 2010. Discovery of chicken microRNAs associated with lipogenesis and cell proliferation. Physiological Genomics 41, 185193.Google Scholar
Huang, P, Gong, Y, Peng, X, Li, S, Yang, Y, Feng, Y 2010. Cloning, identification, and expression analysis at the stage of gonadal sex differentiation of chicken miR-363 and 363*. Acta Biochimica et Biophysica Sinica 42, 522529.Google Scholar
Hutvagner, G, McLachlan, J, Pasquinelli, AE, Balint, E, Tuschl, T, Zamore, PD 2001. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834838.CrossRefGoogle ScholarPubMed
Jin, W, Grant, JR, Stothard, P, Moore, SS, Guan, LL 2009. Characterization of bovine miRNAs by sequencing and bioinformatics analysis. BMC Molecular Biology 10, 90.Google Scholar
Jin, W, Dodson, MV, Moore, SS, Basarab, JA, Guan, LL 2010. Characterization of microRNA expression in bovine adipose tissues: a potential regulatory mechanism of subcutaneous adipose tissue development. BMC Molecular Biology 11, 29.Google Scholar
Jovanovic, M, Reiter, L, Picotti, P, Lange, V, Bogan, E, Hurschler, BA, Blenkiron, C, Lehrbach, NJ, Ding, XC, Weiss, M, Schrimpf, SP, Miska, EA, Grosshans, H, Aebersold, R, Hengartner, MO 2010. A quantitative targeted proteomics approach to validate predicted microRNA targets in C. Elegans. Nature Methods 7, 837842.CrossRefGoogle ScholarPubMed
Khvorova, A, Reynolds, A, Jayasena, SD 2003. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209216.Google Scholar
Kim, VN 2005. MicroRNA biogenesis: coordinated cropping and dicing. Nature Reviews Molecular Cell Biology 6, 376385.Google Scholar
Kim, D, Song, J, Jin, EJ 2010. MicroRNA-221 regulates chondrogenic differentiation through promoting proteosomal degradation of slug by targeting Mdm2. Journal of Biological Chemistry 285, 2690026907.Google Scholar
Kim, D, Song, J, Kim, S, Chun, CH, Jin, EJ 2011a. MicroRNA-34a regulates migration of chondroblast and IL-1beta-induced degeneration of chondrocytes by targeting EphA5. Biochemical and Biophysical Research Communications 415, 551557.CrossRefGoogle ScholarPubMed
Kim, D, Song, J, Kim, S, Kang, SS, Jin, EJ 2011b. MicroRNA-142-3p regulates TGF-beta3-mediated region-dependent chondrogenesis by regulating ADAM9. Biochemical and Biophysical Research Communications 414, 653659.Google Scholar
Kim, D, Song, J, Kim, S, Park, HM, Chun, CH, Sonn, J, Jin, EJ 2012. MicroRNA-34a modulates cytoskeletal dynamics through regulating RhoA/Rac1 cross-talk in chondroblasts. Journal of Biological Chemistry 287, 1250112509.Google Scholar
Kozomara, A, Griffiths-Jones, S 2011. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Research 39, D152D157.Google Scholar
Lee, RC, Feinbaum, RL, Ambros, V 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843854.Google Scholar
Lee, SI, Lee, BR, Hwang, YS, Lee, HC, Rengaraj, D, Song, G, Park, TS, Han, JY 2011. MicroRNA-mediated posttranscriptional regulation is required for maintaining undifferentiated properties of blastoderm and primordial germ cells in chickens. Proceedings of the National Academy of Sciences of the United States of America 108, 1042610431.Google Scholar
Lee, Y, Ahn, C, Han, J, Choi, H, Kim, J, Yim, J, Lee, J, Provost, P, Radmark, O, Kim, S, Kim, VN 2003. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415419.Google Scholar
Lei, B, Gao, S, Luo, LF, Xia, XY, Jiang, SW, Deng, CY, Xiong, YZ, Li, FE 2011. A SNP in the miR-27a gene is associated with litter size in pigs. Molecular Biology Reports 38, 37253729.Google Scholar
Lewis, BP, Burge, CB, Bartel, DP 2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 1520.Google Scholar
Li, C, He, H, Zhu, M, Zhao, S, Li, X 2013. Molecular characterisation of porcine miR-155 and its regulatory roles in the TLR3/TLR4 pathways. Developmental and Comparative Immunology 39, 110116.CrossRefGoogle ScholarPubMed
Li, G, Li, Y, Li, X, Ning, X, Li, M, Yang, G 2011a. MicroRNA identity and abundance in developing swine adipose tissue as determined by Solexa sequencing. Journal of Cellular Biochemistry 112, 13181328.CrossRefGoogle ScholarPubMed
Li, H, Zhang, Z, Zhou, X, Wang, Z, Wang, G, Han, Z 2011b. Effects of microRNA-143 in the differentiation and proliferation of bovine intramuscular preadipocytes. Molecular Biology Reports 38, 42734280.Google Scholar
Li, T, Wu, R, Zhang, Y, Zhu, D 2011c. A systematic analysis of the skeletal muscle miRNA transcriptome of chicken varieties with divergent skeletal muscle growth identifies novel miRNAs and differentially expressed miRNAs. BMC Genomics 12, 186.Google Scholar
Li, ZY, Xi, Y, Zhu, WN, Zeng, C, Zhang, ZQ, Guo, ZC, Hao, DL, Liu, G, Feng, L, Chen, HZ, Chen, F, Lv, X, Liu, DP, Liang, CC 2011d. Positive regulation of hepatic miR-122 expression by HNF4alpha. Journal of Hepatology 55, 602611.Google Scholar
Li, M, Xia, Y, Gu, Y, Zhang, K, Lang, Q, Chen, L, Guan, J, Luo, Z, Chen, H, Li, Y, Li, Q, Li, X, Jiang, AA, Shuai, S, Wang, J, Zhu, Q, Zhou, X, Gao, X 2010. MicroRNAome of porcine pre- and postnatal development. PLoS One 5, e11541.CrossRefGoogle ScholarPubMed
Lian, C, Sun, B, Niu, S, Yang, R, Liu, B, Lu, C, Meng, J, Qiu, Z, Zhang, L, Zhao, Z 2012. A comparative profile of the microRNA transcriptome in immature and mature porcine testes using Solexa deep sequencing. FEBS Journal 279, 964975.Google Scholar
Lingenfelter, BM, Tripurani, SK, Tejomurtula, J, Smith, GW, Yao, J 2011. Molecular cloning and expression of bovine nucleoplasmin 2 (NPM2): a maternal effect gene regulated by miR-181a. Reproductive Biology and Endocrinology 9, 40.CrossRefGoogle ScholarPubMed
Liu, H, Yue, D, Chen, Y, Gao, SJ, Huang, Y 2010. Improving performance of mammalian microRNA target prediction. BMC Bioinformatics 11, 476.Google Scholar
Luense, LJ, Veiga-Lopez, A, Padmanabhan, V, Christenson, LK 2011. Developmental programming: gestational testosterone treatment alters fetal ovarian gene expression. Endocrinology 152, 49744983.Google Scholar
Lund, E, Guttinger, S, Calado, A, Dahlberg, JE, Kutay, U 2004. Nuclear export of microRNA precursors. Science 303, 9598.Google Scholar
Luo, L, Ye, L, Liu, G, Shao, G, Zheng, R, Ren, Z, Zuo, B, Xu, D, Lei, M, Jiang, S, Deng, C, Xiong, Y, Li, F 2010. Microarray-based approach identifies differentially expressed microRNAs in porcine sexually immature and mature testes. PLoS One 5, e11744.Google Scholar
Ma, T, Jiang, H, Gao, Y, Zhao, Y, Dai, L, Xiong, Q, Xu, Y, Zhao, Z, Zhang, J 2011. Microarray analysis of differentially expressed microRNAs in non-regressed and regressed bovine corpus luteum tissue; microRNA-378 may suppress luteal cell apoptosis by targeting the interferon gamma receptor 1 gene. Journal of Applied Genetics 52, 481486.Google Scholar
Maak, S, Boettcher, D, Komolka, K, Tetens, J, Wimmers, K, Reinsch, N, Swalve, HH, Thaller, G 2010. Exclusion of sequence polymorphisms in the porcine ITGA5 and MIR148B loci as causal variation for congenital splay leg in piglets. Animal Genetics 41, 447448.Google Scholar
McBride, D, Carre, W, Sontakke, S, Hogg, CO, Law, AS, Donadeu, FX, Clinton, M 2012. Identification of miRNAs associated with the follicular-luteal transition in the ruminant ovary. Reproduction 144, 221233.Google Scholar
Miles, JR, McDaneld, TG, Wiedmann, RT, Cushman, RA, Echternkamp, SE, Vallet, JL, Smith, TP 2012. MicroRNA expression profile in bovine cumulus-oocyte complexes: possible role of let-7 and miR-106a in the development of bovine oocytes. Animal Reproduction Science 130, 1626.Google Scholar
Miretti, S, Martignani, E, Taulli, R, Bersani, F, Accornero, P, Baratta, M 2011. Differential expression of microRNA-206 in skeletal muscle of female Piedmontese and Friesian cattle. Veterinary Journal 190, 412413.Google Scholar
Mondou, E, Dufort, I, Gohin, M, Fournier, E, Sirard, MA 2012. Analysis of microRNAs and their precursors in bovine early embryonic development. Molecular Human Reproduction 18, 425434.Google Scholar
Naguibneva, I, Ameyar-Zazoua, M, Polesskaya, A, Ait-Si-Ali, S, Groisman, R, Souidi, M, Cuvellier, S, Harel-Bellan, A 2006a. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nature Cell Biology 8, 278284.Google Scholar
Naguibneva, I, Ameyar-Zazoua, M, Nonne, N, Polesskaya, A, Ait-Si-Ali, S, Groisman, R, Souidi, M, Pritchard, LL, Harel-Bellan, A 2006b. An LNA-based loss-of-function assay for micro-RNAs. Biomedicine Pharmacotherapy 60, 633638.Google Scholar
Rengaraj, D, Lee, BR, Lee, SI, Seo, HW, Han, JY 2011. Expression patterns and miRNA regulation of DNA methyltransferases in chicken primordial germ cells. PLoS One 6, e19524.Google Scholar
Romao, JM, Jin, W, He, M, McAllister, T, Guan le, L 2012. Altered microRNA expression in bovine subcutaneous and visceral adipose tissues from cattle under different diet. PLoS One 7, e40605.Google Scholar
Saito, Y, Saito, H 2012. Role of CTCF in the regulation of microRNA expression. Frontiers in Genetics 3, 186.Google Scholar
Saito, Y, Suzuki, H, Taya, T, Nishizawa, M, Tsugawa, H, Matsuzaki, J, Hirata, K, Saito, H, Hibi, T 2012. Development of a novel microRNA promoter microarray for ChIP-on-chip assay to identify epigenetically regulated microRNAs. Biochemical and Biophysical Research Communications 426, 3337.Google Scholar
Sawera, M, Gorodkin, J, Cirera, S, Fredholm, M 2005. Mapping and expression studies of the mir17-92 cluster on pig chromosome 11. Mammalian Genome 16, 594598.Google Scholar
Saxena, R, Voight, BF, Lyssenko, V, Burtt, NP, de Bakker, PI, Chen, H, Roix, JJ, Kathiresan, S, Hirschhorn, JN, Daly, MJ, Hughes, TE, Groop, L, Altshuler, D, Almgren, P, Florez, JC, Meyer, J, Ardlie, K, Bengtsson Bostrom, K, Isomaa, B, Lettre, G, Lindblad, U, Lyon, HN, Melander, O, Newton-Cheh, C, Nilsson, P, Orho-Melander, M, Rastam, L, Speliotes, EK, Taskinen, MR, Tuomi, T, Guiducci, C, Berglund, A, Carlson, J, Gianniny, L, Hackett, R, Hall, L, Holmkvist, J, Laurila, E, Sjogren, M, Sterner, M, Surti, A, Svensson, M, Tewhey, R, Blumenstiel, B, Parkin, M, Defelice, M, Barry, R, Brodeur, W, Camarata, J, Chia, N, Fava, M, Gibbons, J, Handsaker, B, Healy, C, Nguyen, K, Gates, C, Sougnez, C, Gage, D, Nizzari, M, Gabriel, SB, Chirn, GW, Ma, Q, Parikh, H, Richardson, D, Ricke, D, Purcell, S 2007. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316, 13311336.Google Scholar
Scott, LJ, Mohlke, KL, Bonnycastle, LL, Willer, CJ, Li, Y, Duren, WL, Erdos, MR, Stringham, HM, Chines, PS, Jackson, AU, Prokunina-Olsson, L, Ding, CJ, Swift, AJ, Narisu, N, Hu, T, Pruim, R, Xiao, R, Li, XY, Conneely, KN, Riebow, NL, Sprau, AG, Tong, M, White, PP, Hetrick, KN, Barnhart, MW, Bark, CW, Goldstein, JL, Watkins, L, Xiang, F, Saramies, J, Buchanan, TA, Watanabe, RM, Valle, TT, Kinnunen, L, Abecasis, GR, Pugh, EW, Doheny, KF, Bergman, RN, Tuomilehto, J, Collins, FS, Boehnke, M 2007. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316, 13411345.Google Scholar
Sharbati-Tehrani, S, Kutz-Lohroff, B, Scholven, J, Einspanier, R 2008. Concatameric cloning of porcine microRNA molecules after assembly PCR. Biochemical and Biophysical Research Communications 375, 484489.Google Scholar
Sharbati, S, Friedlander, MR, Sharbati, J, Hoeke, L, Chen, W, Keller, A, Stahler, PF, Rajewsky, N, Einspanier, R 2010. Deciphering the porcine intestinal microRNA transcriptome. BMC Genomics 11, 275.Google Scholar
Sheng, X, Song, X, Yu, Y, Niu, L, Li, S, Li, H, Wei, C, Liu, T, Zhang, L, Du, L 2011. Characterization of microRNAs from sheep (Ovis aries) using computational and experimental analyses. Molecular Biology Reports 38, 31613171.Google Scholar
Shi, L, Ko, ML, Ko, GY 2009. Rhythmic expression of microRNA-26a regulates the L-type voltage-gated calcium channel alpha1C subunit in chicken cone photoreceptors. Journal of Biological Chemistry 284, 2579125803.Google Scholar
Siomi, H, Siomi, MC 2010. Posttranscriptional regulation of microRNA biogenesis in animals. Molecular Cell 38, 323332.Google Scholar
Stefansson, H, Ophoff, RA, Steinberg, S, Andreassen, OA, Cichon, S, Rujescu, D, Werge, T, Pietilainen, OP, Mors, O, Mortensen, PB, Sigurdsson, E, Gustafsson, O, Nyegaard, M, Tuulio-Henriksson, A, Ingason, A, Hansen, T, Suvisaari, J, Lonnqvist, J, Paunio, T, Borglum, AD, Hartmann, A, Fink-Jensen, A, Nordentoft, M, Hougaard, D, Norgaard-Pedersen, B, Bottcher, Y, Olesen, J, Breuer, R, Moller, HJ, Giegling, I, Rasmussen, HB, Timm, S, Mattheisen, M, Bitter, I, Rethelyi, JM, Magnusdottir, BB, Sigmundsson, T, Olason, P, Masson, G, Gulcher, JR, Haraldsson, M, Fossdal, R, Thorgeirsson, TE, Thorsteinsdottir, U, Ruggeri, M, Tosato, S, Franke, B, Strengman, E, Kiemeney, LA, Melle, I, Djurovic, S, Abramova, L, Kaleda, V, Sanjuan, J, de Frutos, R, Bramon, E, Vassos, E, Fraser, G, Ettinger, U, Picchioni, M, Walker, N, Toulopoulou, T, Need, AC, Ge, D, Yoon, JL, Shianna, KV, Freimer, NB, Cantor, RM, Murray, R, Kong, A, Golimbet, V, Carracedo, A, Arango, C, Costas, J, Jonsson, EG, Terenius, L, Agartz, I, Petursson, H, Nothen, MM, Rietschel, M, Matthews, PM, Muglia, P, Peltonen, L, St Clair, D, Goldstein, DB, Stefansson, K, Collier, DA 2009. Common variants conferring risk of schizophrenia. Nature 460, 744747.Google Scholar
Takeda, H, Charlier, C, Farnir, F, Georges, M 2010. Demonstrating polymorphic miRNA-mediated gene regulation in vivo: application to the g+6223G->A mutation of Texel sheep. RNA 16, 18541863.Google Scholar
Torley, KJ, da Silveira, JC, Smith, P, Anthony, RV, Veeramachaneni, DN, Winger, QA, Bouma, GJ 2011. Expression of miRNAs in ovine fetal gonads: potential role in gonadal differentiation. Reproductive Biology and Endocrinology 9, 2.Google Scholar
Townley-Tilson, WH, Callis, TE, Wang, D 2010. MicroRNAs 1, 133, and 206: critical factors of skeletal and cardiac muscle development, function, and disease. The International Journal of Biochemistry & Cell Biology 42, 12521255.Google Scholar
Trakooljul, N, Hicks, JA, Liu, HC 2010. Identification of target genes and pathways associated with chicken microRNA miR-143. Animal Genetics 41, 357364.Google Scholar
Tripurani, SK, Lee, KB, Wee, G, Smith, GW, Yao, J 2011. MicroRNA-196a regulates bovine newborn ovary homeobox gene (NOBOX) expression during early embryogenesis. BMC Developmental Biology 11, 25.Google Scholar
Wang, XG, Yu, JF, Zhang, Y, Gong, DQ, Gu, ZL 2012. Identification and characterization of microRNA from chicken adipose tissue and skeletal muscle. Poultry Science 91, 139149.Google Scholar
Wang, Z, Lin, S, Li, JJ, Xu, Z, Yao, H, Zhu, X, Xie, D, Shen, Z, Sze, J, Li, K, Lu, G, Chan, DT, Poon, WS, Kung, HF, Lin, MC 2011. MYC protein inhibits transcription of the microRNA cluster MC-let-7a-1∼let-7d via noncanonical E-box. Journal of Biological Chemistry 286, 3970339714.Google Scholar
Wenguang, Z, Jianghong, W, Jinquan, L, Yashizawa, M 2007. A subset of skin-expressed microRNAs with possible roles in goat and sheep hair growth based on expression profiling of mammalian microRNAs. OMICS 11, 385396.Google Scholar
Wienholds, E, Plasterk, RH 2005. MicroRNA function in animal development. FEBS Letters 579, 59115922.Google Scholar
Wu, L, Fan, J, Belasco, JG 2006. MicroRNAs direct rapid deadenylation of mRNA. Proceedings of the National Academy of Sciences of the United States of America 103, 40344039.Google Scholar
Xie, SS, Huang, TH, Shen, Y, Li, XY, Zhang, XX, Zhu, MJ, Qin, HY, Zhao, SH 2010. Identification and characterization of microRNAs from porcine skeletal muscle. Animal Genetics 41, 179190.Google Scholar
Xu, H, Wang, X, Du, Z, Li, N 2006. Identification of microRNAs from different tissues of chicken embryo and adult chicken. FEBS Letters 580, 36103616.Google Scholar
Xu, H, Yao, Y, Smith, LP, Nair, V 2010. MicroRNA-26a-mediated regulation of interleukin-2 expression in transformed avian lymphocyte lines. Cancer Cell International 10, 15.Google Scholar
Xu, S, Linher-Melville, K, Yang, BB, Wu, D, Li, J 2011. Micro-RNA378 (miR-378) regulates ovarian estradiol production by targeting aromatase. Endocrinology 152, 39413951.Google Scholar
Yao, J, Wang, Y, Wang, W, Wang, N, Li, H 2011. Solexa sequencing analysis of chicken pre-adipocyte microRNAs. Bioscience Biotechnology and Biochemistry 75, 5461.Google Scholar
Yeager, M, Orr, N, Hayes, RB, Jacobs, KB, Kraft, P, Wacholder, S, Minichiello, MJ, Fearnhead, P, Yu, K, Chatterjee, N, Wang, Z, Welch, R, Staats, BJ, Calle, EE, Feigelson, HS, Thun, MJ, Rodriguez, C, Albanes, D, Virtamo, J, Weinstein, S, Schumacher, FR, Giovannucci, E, Willett, WC, Cancel-Tassin, G, Cussenot, O, Valeri, A, Andriole, GL, Gelmann, EP, Tucker, M, Gerhard, DS, Fraumeni, JF Jr, Hoover, R, Hunter, DJ, Chanock, SJ, Thomas, G 2007. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nature Genetics 39, 645649.Google Scholar
Yekta, S, Shih, IH, Bartel, DP 2004. MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594596.Google Scholar
Zhao, C, Tian, F, Yu, Y, Liu, G, Zan, L, Updike, MS, Song, J 2012a. miRNA-dysregulation associated with tenderness variation induced by acute stress in Angus cattle. Journal of Animal Science and Biotechnology 3, 12.Google Scholar
Zhao, S, Zhang, J, Hou, X, Zan, L, Wang, N, Tang, Z, Li, K 2012b. OLFML3 expression is decreased during prenatal muscle development and regulated by microRNA-155 in pigs. International Journal of Biological Sciences 8, 459469.Google Scholar