Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-24T13:31:16.846Z Has data issue: false hasContentIssue false

Direct and indirect impacts of crop–livestock organization on mixed crop–livestock systems sustainability: a model-based study

Published online by Cambridge University Press:  11 May 2016

I. Sneessens*
Affiliation:
INRA, UMR1213, F-63122 Saint-Genès-Champanelle, France French Environment and Energy Management Agency, 20 avenue du Grésillé - BP 90406, 49004 Angers Cedex 01, France
P. Veysset
Affiliation:
INRA, UMR1213, F-63122 Saint-Genès-Champanelle, France
M. Benoit
Affiliation:
INRA, UMR1213, F-63122 Saint-Genès-Champanelle, France
A. Lamadon
Affiliation:
INRA, UMR1213, F-63122 Saint-Genès-Champanelle, France
G. Brunschwig
Affiliation:
INRA, UMR1213, F-63122 Saint-Genès-Champanelle, France Clermont University, VetAgro Sup, UMR1213, BP 10448, 63000 Clermont-Ferrand, France
*
Get access

Abstract

Crop–livestock production is claimed more sustainable than specialized production systems. However, the presence of controversial studies suggests that there must be conditions of mixing crop and livestock productions to allow for higher sustainable performances. Whereas previous studies focused on the impact of crop–livestock interactions on performances, we posit here that crop–livestock organization is a key determinant of farming system sustainability. Crop–livestock organization refers to the percentage of the agricultural area that is dedicated to each production. Our objective is to investigate if crop–livestock organization has both a direct and an indirect impact on mixed crop–livestock (MC–L) sustainability. In that objective, we build a whole-farm model parametrized on representative French sheep and crop farming systems in plain areas (Vienne, France). This model permits simulating contrasted MC–L systems and their subsequent sustainability through the following indicators of performance: farm income, production, N balance, greenhouse gas (GHG) emissions (/kg product) and MJ consumption (/kg product). Two MC–L systems were simulated with contrasted crop–livestock organizations (MC20–L80: 20% of crops; MC80–L20: 80% of crops). A first scenario – constraining no crop–livestock interactions in both MC–L systems – permits highlighting that crop–livestock organization has a significant direct impact on performances that implies trade-offs between objectives of sustainability. Indeed, the MC80–L20 system is showing higher performances for farm income (+44%), livestock production (+18%) and crop GHG emissions (−14%) whereas the MC20–L80 system has a better N balance (−53%) and a lower livestock MJ consumption (−9%). A second scenario – allowing for crop–livestock interactions in both MC20–L80 and MC80–L20 systems – stated that crop–livestock organization has a significant indirect impact on performances. Indeed, even if crop–livestock interactions permit improving performances, crop–livestock organization influences the capacity of MC–L systems to benefit from crop–livestock interactions. As a consequence, we observed a decreasing performance trade-off between MC–L systems for farm income (−4%) and crop GHG emissions (−10%) whereas the gap increases for nitrogen balance (+23%), livestock production (+6%) – MJ consumption (+16%) – GHG emissions (+5%) and crop MJ consumption (+5%). However, the indirect impact of crop–livestock organization doesn’t reverse the trend of trade-offs between objectives of sustainability determined by the direct impact of crop–livestock organization. As a conclusion, crop–livestock organization is a key factor that has to be taken into account when studying the sustainability of mixed crop–livestock systems.

Type
Research Article
Copyright
© The Animal Consortium 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ademe 2010. Guide de la méthode Diaterre. Agence de l’Environnement et de la Maîtrise de l’Energie, Paris, France.Google Scholar
Agreste 2013. Utilisation du territoire. Statistique Agricole Annuelle. Retrieved on 10 May 2014 from http://www.agreste.agriculture.gouv.fr.Google Scholar
Bell, LW and Moore, AD 2012. Integrated crop–livestock systems in Australian agriculture: trends, drivers and implications. Agricultural Systems 111, 112.Google Scholar
Bell, LW, Moore, AD and Kirkegaard, JA 2014. Evolution in crop–livestock integration systems that improve farm productivity and environmental performance in Australia. European Journal of Agronomy 57, 1020.CrossRefGoogle Scholar
Benoit, M 1998. Un outil de simulation du fonctionnement du troupeau ovin allaitant et de ses résultats économiques: une aide pour l’adaptation des contextes nouveaux. INRA Productions Animales 11, 199209.CrossRefGoogle Scholar
Benoit, M and Laignel, G 2010. Energy consumption in mixed crop-sheep farming systems: what factors of variation and how to decrease? Animal 4, 15971605.CrossRefGoogle ScholarPubMed
Benoit, M and Laignel, G 2011. Long term analysis of meat sheep farming systems in France. Which dynamics of evolution and which factors can explain the economical performance? INRA Productions Animales 24, 211220.Google Scholar
Bommarco, R, Kleijn, D and Potts, SG 2013. Ecological intensification: harnessing ecosystem services for food security. Trends in Ecology & Evolution 28, 230238.Google Scholar
Bonaudo, T, Bendahan, AB, Sabatier, R, Ryschawy, J, Bellon, S, Leger, F, Magda, D and Tichit, M 2014. Agroecological principles for the redesign of integrated crop–livestock systems. European Journal of Agronomy 57, 4351.CrossRefGoogle Scholar
Byrne, F, Robertson, MJ, Bathgate, A and Hoque, Z 2010. Factors influencing potential scale of adoption of a perennial pasture in a mixed crop-livestock farming system. Agricultural Systems 103, 453462.Google Scholar
Chauvat, S and Servière, G 2005. Améliorer les conditions de travail en élevage ovin viance pour lever un frein majeur à son développement. Insitut de l'élevage/Département Actions Régionales, Paris, France.Google Scholar
Ciirpo 2008. Alimentation des brebis à l’herbe: du colza fourrager pour les brebis. Institut de l'élevage/CIIRPO, 2. Retrieved on 10 April 2014 from http://idele.fr/rss/publication/idelesolr/recommends/du-colza-fourrager-pour-les-brebis.html.Google Scholar
Cournut, S and Chauvat, S 2010. Qualifier la vivabilité des exploitations d'élevage de ruminants d’un point de vue du travail. Rencontres Recherches Ruminants 17, 425428.Google Scholar
Dedieu, B, Coulomb, S, Servière, G and Tchakerian, E 2000. Bilan Travail pour l'étude du fonctionnement des exploitations d'élevage. Institut de l'élevage, Paris, France.Google Scholar
Dupraz, P 1998. Intensification et spécialisation des exploitations agricoles: apports et limites de la théorie des marchés contestables. In Gestion des exploitations et des ressources rurales. Entreprendre, négocier, évaluer (ed. J Brossier and B Dent), pp. 357369. INRA, Versailles, France.Google Scholar
France Agricole 2014. PAC 2015-2020, le détail de vos aides. France Agricole no 3550-3551, 8 août 2014, France Agricole, Paris, France.Google Scholar
Frontline System 1999. Solver user’s guide. Version 3.5. Frontline System Inc., Incline Village, NV, USA.Google Scholar
Idele 1999. Le bilan des minéraux. Le Cahier de l’Eleveur, Paris, France.Google Scholar
Idele 2013. Les cas type ovins viande en Poitou-Charentes, Pays-de-la-Loire, Bretagne. Retrieved on 3 February 2014 from http://idele.fr/filieres/ovin-viande/publication/idelesolr/recommends/systemes-ovins-de-louest.html.Google Scholar
INRA 2007. Bovine, ovine and caprine feeding. In Feeding needs and feed values (ed. J Agabriel), pp. 1–307. Quae Editions, Paris, France.Google Scholar
Kingwell, RS and Pannell, DJ 1987. MIDAS, a bioeconomic model of a dryland farm system. Pudoc, Wageningen, the Netherlands.Google Scholar
Lemaire, G 2007. Interactions entre systèmes fourragers et systèmes de grandes cultures à l'échelle d’un territoire. Intérêts pour l’environnement. Fourrages 189, 1932.Google Scholar
Lemaire, G, Franzluebbers, A, Carvalho, PCDF and Dedieu, B 2014. Integrated crop–livestock systems: Strategies to achieve synergy between agricultural production and environmental quality. Agriculture, Ecosystems & Environment 190, 48.Google Scholar
Madelrieux, S, Dedieu, B, Dobremez, L and Girard, N 2009. Patterns of work organisation in livestock farms: the ATELAGE approach. Livestock science 121, 2837.Google Scholar
Moraine, M, Duru, M, Nicholas, P, Leterme, P and Therond, O 2014. Farming system design for innovative crop-livestock integration in Europe. Animal 8, 12041217.Google Scholar
Morrison, DA, Kingwell, RS and Pannell, DJ 1986. A mathematical programming model of a crop-livestock farm system. Agricultural Systems 20, 243268.CrossRefGoogle Scholar
Parsons, D, Nicholson, CF, Blake, RW, Ketterings, QM, Ramírez-Aviles, L, Cherney, JH and Fox, DG 2011a. Application of a simulation model for assessing integration of smallholder shifting cultivation and sheep production in Yucatán, Mexico. Agricultural Systems 104, 1319.CrossRefGoogle Scholar
Parsons, D, Nicholson, CF, Blake, RW, Ketterings, QM, Ramírez-Aviles, L, Fox, DG, Tedeschi, LO and Cherney, JH 2011b. Development and evaluation of an integrated simulation model for assessing smallholder crop–livestock production in Yucatán, Mexico. Agricultural Systems 104, 112.CrossRefGoogle Scholar
Perrot, C, Caillaud, D and Chambaut, H 2012. Économies d’échelle et économies de gamme en production laitière. Analyse technico-économique et environnementale des exploitations de polyculture-élevage françaises. Rencontres Recherches Ruminants 19, 3336.Google Scholar
Peyraud, JL, Taboada, M and Delaby, L 2014. Integrated crop and livestock systems in Western Europe and South America: a review. European Journal of Agronomy 57, 3142.Google Scholar
Rossing, WH, Meynard, JM and Van Ittersum, MK 1997. Model-based explorations to support development of sustainable farming systems: case studies from France and the Netherlands. European Journal of Agronomy 7, 271283.Google Scholar
Russelle, MP, Entz, MH and Franzluebbers, AJ 2007. Reconsidering Integrated crop–livestock systems in North America. Agronomy Journal 99, 325.Google Scholar
Ryschawy, J, Choisis, N, Choisis, JP, Joannon, A and Gibon, A 2012. Mixed crop-livestock systems: an economic and environmental-friendly way of farming? Animal 6, 17221730.Google Scholar
Simon, JC and Le Corre, L 1992. Le bilan apparent de l’azote à l'échelle de l’exploitation agricole: méthodologie, exemples de résultats. Fourrages 129, 7994.Google Scholar
SOERE-ACBB. Experimental site of INRA Lusigan: Agro-ecosystems, biogeochemical cycles and biodiversity. Retrieved on 3 April 2013 from www.soere-acbb.com.Google Scholar
Soussana, JF and Lemaire, G 2014. Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems. Agriculture, Ecosystems & Environment 190, 917.Google Scholar
Sterk, B, Van Ittersum, MK, Leeuwis, C and Wijnands, FG 2007. Prototyping and farm system modelling – partners on the road towards more sustainable farm systems? European Journal of Agronomy 26, 401409.Google Scholar
Thamo, T, Kingwell, RS and Pannell, DJ 2013. Measurement of greenhouse gas emissions from agriculture: economic implications for policy and agricultural producers. Australian Journal of Agricultural and Resource Economics 57, 234252.Google Scholar
Tichit, M, Puillet, L, Sabatier, R and Teillard, F 2011. Multicriteria performance and sustainability in livestock farming systems: functional diversity matters. Livestock Science 139, 161171.CrossRefGoogle Scholar
Veysset, P, Lherm, M and Bébin, D 2010. Energy consumption, greenhouse gas emissions and economic performance assessments in French Charolais suckler cattle farms: model-based analysis and forecasts. Agricultural Systems 103, 4150.Google Scholar
Veysset, P, Lherm, M, Bebin, D and Roulenc, M 2014. Mixed crop-livestock farming systems: a sustainable way to produce beef? Commercial farms results, questions and perspectives. Animal 8, 12181228.Google Scholar
Wilkins, RJ 2008. Eco-efficient approaches to land management: a case for increased integration of crop and animal production systems. Philosophical Transactions of the Royal Society Lond B:Biological Sciences 363, 517525.CrossRefGoogle ScholarPubMed
Supplementary material: File

Sneessens supplementary material S1

Sneessens supplementary material

Download Sneessens supplementary material S1(File)
File 19.1 KB
Supplementary material: File

Sneessens supplementary material S2

Sneessens supplementary material

Download Sneessens supplementary material S2(File)
File 19.5 KB
Supplementary material: File

Sneessens supplementary material S3

Sneessens supplementary material

Download Sneessens supplementary material S3(File)
File 20 KB
Supplementary material: File

Sneessens supplementary material S4

Sneessens supplementary material

Download Sneessens supplementary material S4(File)
File 19.7 KB
Supplementary material: File

Sneessens supplementary material S5

Sneessens supplementary material

Download Sneessens supplementary material S5(File)
File 21.4 KB