Published online by Cambridge University Press: 02 September 2010
Two studies were conducted to examine the effects of selection for milk-fat yield on pancreatic responses to exogenous glucose, as measured by circulating insulin concentrations following an intravenous glucose load, in heifer calves. The first study involved 6-month-old Friesian heifers, eight each from the Massey University high breeding index (HBI) and low breeding index (LBI) lines. Average breeding indices (BI) for milk-fat yield of the calves based on ancestry BI were 136 (s.d. 2) and 112 (s.d. 2), respectively. Oestrous cycling of the heifers was controlled by intravaginal insertion of progesterone-impregnated controlled internal drug-releasing devices (CIDRs). Challenges of glucose (0, 75, 150 and 300 mg/kg live weight) and insulin (0, 0·1, 1, and 10 fig/kg live weight) were administered via indwelling jugular cannulas and were followed by serial blood sampling to measure responses. Plasma insulin concentrations immediately following the glucose challenge were significantly (P < 0·05) greater in HBI than in LBI heifers, peak insulin concentrations (above baseline) in the HBI group being approximately twice those in the LBI group. Plasma glucose concentrations were marginally lower in HBI heifers, probably due to the secondary effect of the relatively greater hyperinsulinaemia in this group. Although the exogenous insulin challenge significantly reduced circulating glucose concentrations in all heifers, there was no difference between the lines in the magnitude of insulin-induced hypoglycaemia.
The second study was designed to determine whether insulin responses to an exogenous glucose load were influenced by stage of the oestrous cycle in heifers of the two lines. In this study, eight yearling HBI heifers and eight LBI heifers (with BI of 135 (s.d. 4) and 111 (s.d. 1) respectively) were administered an intravenous glucose load (150 mg/kg live weight) on tivo occasions, the first being after 17 days of CIDR treatment (simulating the luteal phase of the oestrous cycle) and the second 46 h after withdrawal of the CIDRs (when the heifers were expected to be in oestrus). HBI heifers again showed significantly greater circulating insulin concentrations than LBI heifers following the glucose challenge but the magnitude of this effect was not influenced by time relative to CIDR withdrawal. It is concluded that heifers selected for high milk-fat yield have an increased pancreatic response to exogenous glucose which is apparently independent of the stage of the oestrous cycle. This difference may provide a useful means of identifying heifers of superior genetic merit for milk-fat production prior to their first lactation.