Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-18T09:00:09.028Z Has data issue: false hasContentIssue false

Voluntary dry-matter intake and digesta kinetics of twin- or single-bearing Manchega ewes given Italian ryegrass hay or alfalfa hay in late pregnancy

Published online by Cambridge University Press:  02 September 2010

A. Ferret
Affiliation:
Departament de Patologia i de Producció Animals, Universitat Autònoma Barcelona, 08193 Bellaterra, Spain
J. Gasa
Affiliation:
Departament de Patologia i de Producció Animals, Universitat Autònoma Barcelona, 08193 Bellaterra, Spain
G. Caja
Affiliation:
Departament de Patologia i de Producció Animals, Universitat Autònoma Barcelona, 08193 Bellaterra, Spain
P. Prió
Affiliation:
Departament de Patologia i de Producció Animals, Universitat Autònoma Barcelona, 08193 Bellaterra, Spain
Get access

Abstract

Forty-eight pregnant Manchega dairy ewes bearing twins or singles penned in groups of six during the last 11 weeks of gestation were used to study the effects offorage type (Italian ryegrass hay or alfalfa hay) and number of foetuses (one or two) on voluntary dry-matter (DM) intake and digesta kinetics. Hays were supplemented with 0·6 kg/day of concentrate. When measured directly for group-fed ewes, forage DM intake was affected byforage type (P < 0·01), whereas litter size had no significant effect. An internal (rumen-undegradable DM) and an external (chromium III oxide) marker were also used to determine intake of individual ewes to account for errors in diagnosing litter size. Estimated DM intake confirmed the effect offorage type on DM intake and revealed the effect of litter size on food intake (F < 0·05). Forage type also affected chromium III oxide fractional outflow rate and flow of undegradable DM, whereas litter size only had an effect at the end of pregnancy by reducing hay intake, rate of passage and digesta flow mainly with alfalfa diets. In conclusion, DM intake, rate of passage and digesta flow was higher with alfalfa hay than with ryegrass hay, in spite of the similar DM apparent digestibilities of both hays. Furthermore, litter size affected DM intake at the end of pregnancy causing an intake decline, which was greater with alfalfa hay than with ryegrass hay.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agabriel, J., D'Hour, P. and Petit, M. 1987. Influence de l'age et de la race sur la capacite d'ingestion des femelles bovines. Reproduction, Nutrition and Developpement 27: 211212.Google Scholar
Agricultural and Food Research Council. 1993. Energy and protein requirements of ruminants. An advisory manual prepared by the AFRC Technical Committee on Responses to Nutrients. CAB International, Wallingford, UK.Google Scholar
Andrighetto, I., Bailoni, L., Cozzi, G., Tolosa, H. F., Hartman, B., Hinds, M. and Sapienza, D. 1993. Observations on in situ degradation of forage cell components in alfalfa and Italian ryegrass. Journal of Dairy Science. 76: 26242631.CrossRefGoogle ScholarPubMed
Bocquier, F. and Caja, G. 1993. Recent advances on nutrition and feeding of dairy sheep. Proceedings of the fifth international symposium on machine milking of small 14–20 May 1993, Budapest, Hungary.Google Scholar
Bocquier, F., Theriez, M. and Brelurut, A. 1987a. Utilisation du foin par la brebis. In Les fourrages sees: recolte, traitment, utilisation (ed. Demarquilly, C.), pp. 423455. Institut National de la Recherche Agronomique, Paris.Google Scholar
Bocquier, F., Theriez, M. and Brelurut, A. 1987b. Recommandations alimentaires pour les brebis en lactation. Bulletin C.R.Z.V. de Theix, INRA. 70: 199211.Google Scholar
Brink, D. R. 1990. Effects of body weight gain in early pregnancy on feed intake, gain, body condition in late pregnancy and lamb weights. Small Ruminant Research. 3: 421424.Google Scholar
Cochran, R. C., Adams, D. C., Wallace, J. D. and Galyean, M. L. 1986. Predicting digestibility of different diets with internal markers: evaluation of four potential markers. Journal of Animal Science 63: 14761483.CrossRefGoogle Scholar
Coffey, K. P., Paterson, J. A., Saul, C. S., Coffey, L. S., Turner, K. E. and Bowman, J. G. 1989. The influence of pregnancy and source of supplemental protein on intake, digestive kinetics and amino acid absorption by ewes. Journal of Animal Science 67: 18051814.CrossRefGoogle ScholarPubMed
Dove, H. and Coombe, J. B. 1992. A comparison of methods for estimating supplement intake and diet digestibility in sheep. Proceedings of the Australian Society Animal Production. 19: 239241.Google Scholar
Faichney, G. J. 1975. The use of markers to partition digestion within the gastro-intestinal tract of ruminants. In Digestion and metabolism in the ruminant (ed. McDonald, I. W. and Warner, A. C. I.), pp. 277291. University of New England Publishing Unit, Armidale, New South Wales.Google Scholar
Faichney, G. J. 1993. Digesta flow. In Quantitative aspects of ruminant digestion and metabolism (ed. Forbes, J. M. and France, J.), pp. 5385. CAB International, Wallingford, UK.Google Scholar
Fondevila, M., Castrillo, C., Gasa, J. and Guada, J. A. 1995. Rumen-undegradable dry matter and neutral detergent fibre as ratio indicators of digestibility in sheep given cereal straw-based diets. Journal of Agricultural Science, Cambridge 125: 145151.Google Scholar
Foot, J. Z. and Russel, A. J. F. 1979. The relationship in ewes between voluntary food intake during pregnancy and forage intake during lactation and after weaning. Animal Production. 28: 2539.Google Scholar
Forbes, J. M. 1970. The voluntary food intake of pregnant and lactating ruminants: a review. British Veterinary Journal. 126: 111.Google Scholar
Forbes, J. M. 1995. Reproduction and lactation. In Voluntary food intake and diet selection in farm animals, pp. 186203. CAB International, Wallingford, UK.Google Scholar
Furnival, E. P., Corbett, J. L. and Inskip, M. W. 1990. Evaluation of controlled release devices for administration of chromium sesquioxide using fistulated grazing sheep. 1. Variation in marker concentration in faeces. Australian Journal of Agricultural Research. 41: 969975.CrossRefGoogle Scholar
Gasa, J., Holtenius, K., Sutton, J. D., Dhanoa, M. S. and Nappers, D. J. 1991. Ruminal fill and digesta kinectics in lactating Friesian cows given two levels of concentrates with two types of grass silage ad lib. British Journal of Nutrition. 66: 381398.CrossRefGoogle Scholar
Goering, H. K. and Van Soest, P. J. 1970. Forage fiber analysis (apparatus, reagents, procedures, and some applications). Agricultural handbook no. 379. ARS, USDA, Washington, DC.Google Scholar
Graham, N. McC. and Williams, A. J. 1962. The effects of pregnancy on the passage of food through the digestive tract of sheep. Australian Journal of Agricultural Research 13: 894900.Google Scholar
Green, D. A., Brink, D. R. and Bauer, M. L. 1994. Characterization of food intake and estradiol-17p during gestation and lactation in twin-bearing ewes. Small Ruminant Research. 13: 153158.Google Scholar
Gunter, S. A., Judkins, M. B., Krysl, L. J., Broesder, J. T., Barton, R. K., Rueda, B. R., Hallford, D. M. and Holcombe, D. W. 1990. Digesta kinetics, ruminal fermentation characteristics and serum metabolites of pregnant and lactating ewes fed chopped alfalfa hay. Journal of Animal Science 68: 38213831.CrossRefGoogle ScholarPubMed
Institut National de la Recherche Agronomique. 1988. Alimentation des bovins, ovins and caprins. INRA, Paris.Google Scholar
Judkins, M. B., Krysl, L. J. and Barton, R. K. 1990. Estimating diet digestibility: a comparison of 11 techniques across six different diets fed to rams. Journal of Animal Science. 68: 14051415.Google Scholar
Le Du, Y. L. P. and Penning, P. D. 1982. Animal based techniques for estimating herbage intake. In Herbage intake handbook (ed. Leaver, J. D.), pp. 3775. British Grassland Institute, Hurley, Maidenhead, Berkshire.Google Scholar
National Research Council. 1985. Nutrient requirements of sheep, sixth revised edition. National Academy Press, Washington, DC.Google Scholar
Orr, R. J. and Treacher, T. T. 1984. The effect of concentrate level on the intake of hays by ewes in late pregnancy. Animal Production 39: 8998.Google Scholar
Orr, R. J. and Treacher, T. T. 1989. The effect of concentrate level on the intake of grass silages by ewes in late pregnancy. Animal Production. 48: 109120.Google Scholar
Orr, R. J. and Treacher, T. T. 1990. The performance of ewes offered diets containing different proportions of perennial ryegrass and white clover silage in late pregnancy. Animal Production. 51: 143153.Google Scholar
Orr, R. J., Treacher, T. T. and Mason, V. C. 1985. The effect of ammonia treatment on the intake of straw and hay when offered with rations of concentrates to ewes in late pregnancy. Animal Production. 40: 101109.Google Scholar
Perez, J. F., Gasa, J., Castrillo, C. and Guada, J. A. 1995. Effect of reproductive state and concentrate supplementation on liquid and particulate turnover in the rumen of ewes given ammonia treated straw. Australian Journal of Agricultural Research. 46: 15791586.Google Scholar
Robinson, J. J., McDonald, I., Frase, C. and Crofts, R. M. J. 1977. Studies on reproduction in prolific ewes. I. Growth of the products of conception. Journal of Agricultural Science, Cambridge. 88: 539552.CrossRefGoogle Scholar
Russel, A. J. F., Doney, J. M. and Gunn, R. G. 1969. Subjective assessment of body fat in live sheep. Journal of Agricultural Science, Cambridge. 72: 451454.CrossRefGoogle Scholar
Statistical Analysis Systems Institute. 1989. SAS/STAT user's guide: statistics, version 6. Statistical Analysis Systems Institute Inc., Cary, NC.Google Scholar
Susmel, P., Stefanon, B., Mills, C. R. and Spanghero, M. 1990. Rumen degradability of organic matter, nitrogen and fibre fractions in forages. Animal Production. 51: 515526.Google Scholar
Tissier, M. and Brelurut, A. 1979. Utilisation d'un ensilage d'herbe de qualite mediocre par les brebis ala fin de la gestation et au debut de la lactation. Bulletin CRZV de Theix, INRA. 35: 5965.Google Scholar
Tissier, M., Theriez, M. and Molenat, G. 1975. Evolution des quantites d'aliment ingerees par les brebis a la fin de la gestation et au debut de la lactation. Incidences sur leurs performances. I. Etude de deux rations a base de foin de qualite differente. Annales de Zootechnie. 24: 711727.CrossRefGoogle Scholar
Tissier, M., Theriez, M. and Molenat, G. 1977. Evolution des quantites d'aliment ingerees par les brebis a la fin de la gestation et au debut de la lactation. Incidences sur leurs performances. II. Ration a base de mai's et de foin distribute a volonte. Annales de Zootechnie. 26: 149166.CrossRefGoogle Scholar
Van Soest, P. J., Robertson, J. B. and Lewis, B. A. 1991. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74: 35833597.Google Scholar
Waldo, D. R. 1986. Effect of forage quality on intake and forage-concentrate interactions. Journal of Dairy Science. 69: 617631.CrossRefGoogle Scholar
Weston, R. H. 1985. The regulation of feed intake in herbage-fed ruminants. Proceedings of the Australian Society ofAnimal Production. 10: 5562.Google Scholar
Weston, R. H. 1988. Factors limiting the intake of feed by sheep. XI. The effect of pregnancy and early lactation on the digestion of a medium-quality roughage. Australian Journal of Agricultural Research. 39: 659669.CrossRefGoogle Scholar
Wilkins, R. J. 1969. The potential digestibility of cellulose in forages and faeces. Journal of Agricultural Science, Cambridge 73: 5764.Google Scholar