Published online by Cambridge University Press: 02 September 2010
Previous studies in foetal and growing sheep have shown that prolonged administration of β-agonist drugs leads to selective but marked attenuation of cardiovascular, metabolic and endocrine responses to the natural catecholamine hormones adrenaline and noradrenaline, as well as attenuation of responses to the drug itself. The experiment reported here was carried out to determine whether administration of the β-agonist drug, salbutamol, by twice-daily intramuscular injection at rates of 40 or 200 μ/kg per day, for a period long enough to result in substantial attenuation of its metabolic and endocrine effects, might also result in impairment in the ability of treated animals to respond to stressful husbandry procedures which disturb metabolic homeostasis and which depend on increased sympathetic nervous and adrenal activity for the restoration of homeostasis. Serial blood sampling on day 1 and day 14 of salbutamol treatment showed that the large increases in plasma lactate and glucose observed on the 1st day were absent on day 14, while the rapid increases in free fatty acids and insulin observed on day 1 were very greatly attenuated. Daily blood sampling also demonstrated that salbutamol, like cimaterol, significantly decreased both pre- and post-feeding plasma insulin and glucose concentrations.
Metabolic and endocrine changes consequent on herding and immersion of the lambs in a sheep-dip, were unaltered by 14 days of salbutamol treatment, even though the procedure resulted in activation of the pituitary-adrenal axis as evidenced by increased β-endorphin and cortisol concentrations, and a large increase in plasma lactate concentration. These results suggest β-agonist-treated animals can respond normally to physiological stresses but further investigations remain necessary to determine whether responses dependent on increased lipid mobilization and shivering, such as shearing or prolonged exposure to severe cold, remain normal in β-agonist treated animals.