Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-04T11:04:28.306Z Has data issue: false hasContentIssue false

Energy cost of eating long hay, straw and pelleted food in sport horses

Published online by Cambridge University Press:  02 September 2010

J. Vernet
Affiliation:
Laboratoire Croissance et Métabolismes des Hervibores
M. Vermorel
Affiliation:
Laboratoire Croissance et Métabolismes des Hervibores
W. Martin-Rosset
Affiliation:
Station de Recherches sur les Herbivores INRA Centre de Recherches de Clermont-Ferrand-Theix 63122 Saint Genès Champanelle, France
Get access

Abstract

Six sport horses were given 1·26 times the measured maintenance energy requirement (MEm) from each of the four following diets: H1, meadow hay in the long form (organic matter digestibility OMD = 0·541); HMI, 700g/kg the same hay and 300 g/kg pelleted maize; HSBPI, 600g/kg hay and 400g/kg pelleted dehydrated sugar-beet pulp; SCFI, 500g/kg wheat straw and 500g/kg pelleted compound food (experiment 1). In experiment 2, eight sport horses were equipped with a portable device for recording feeding behaviour and fed at 1·31 MEm diet HI (meadow hay in the long form: OMD = 0·574).Circadian energy expenditure (EE) of horses was determined by indirect calorimetry using two large open-circuit respiration chambers. Horses were continuously standing. Increase in metabolic rate (IMR) during eating was calculated from the difference between the mean EE obtained during each eatingperiod and the corresponding resting EE. The mean daily ingestion rate of hay H2 amounted to 148 (s.d. 27)mg dry matter per kg metabolic body weight per min. IMR during the two main meals averaged 0·388 (s.d. 0·059) and was not significantly different between diets H1, H2, HM1 and SCF1. Expressed per kg dry matter intake, energy cost of eating (ECE) was similar for diets H2, H1 and SCF1 but significantly lower for HSBP1 and HM1 (P<0·05). ECE of simple foods was calculated from those of the diets and of hay: proportionately 0·010, 0·042, 0·102 and 0·285 metabolizable energy intake for pelleted maize, pelleted SBP, long hay and wheat straw, respectively.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, L., Young, B. A., Nicol, A. M. and Degen, A. A. 1984. Energy cost of eating in cattle given diets of different forms. Animal Production 38: 5366.Google Scholar
Blaxter, K. L. and Joyce, J. P. 1963. The accuracy and ease with which measurements of respiratory metabolism can be made with tracheostomised sheep. British Journal of Nutrition 17: 523.CrossRefGoogle Scholar
Brouwer, E. 1965. Report of the sub-committee on constants and factors. In Energy metabolism (ed. Blaxter, K. L.), pp. 441443. Academic Press, New York.Google Scholar
Brun, J. P., Prache, S. and Bechet, G. 1984. A portable device for eating behaviour studies. Proceedings of the fifth meeting of European Grazing Workshop (ed. Armstrong, R. H. and Doney, J. M.). Hill Farming Research Organisation, Penicuik.Google Scholar
De Jong, A., Strubbe, J. H. and Steffens, A. B. 1977. Hypothalamic influence on insulin and glucagon release in the rat. American Journal of Physiology 233: E380–E388.Google ScholarPubMed
Diamond, P., Brondel, L. and Leblanc, J. 1985. Palatability and postprandial thermogenesis in dogs. American Journal of Physiology 248: E75–E79.Google ScholarPubMed
Doreau, M. 1978. Comportement alimentaire du cheval à l'écurie. Annales de Zootcchnie 27: 291302.CrossRefGoogle Scholar
Dulphy, J. P., Remond, B. and Theriez, M. 1980. Ingestive behaviour and related activities in ruminants. In Digestive physiology and metabolism in ruminants (ed. Ruckebush, Y. and Thivend, P.), pp. 103122. AVI Publishing Company, Connecticut.CrossRefGoogle Scholar
Feldman, M. and Richardson, C. T. 1986. The cephalic phase of gastric secretion. In Interaction of the chemical senses with nutrition (ed. Kare, M. R. and Brand, J. G.), pp. 181192. Academic Press, New York.CrossRefGoogle Scholar
Graham, N. McC. 1964. Energy cost of feeding activities and energy expenditure of grazing sheep. Australian Journal of Agricultural Research 15: 969973.Google Scholar
Grenet, E. 1989. A comparison of the digestion and reduction in particle size of lucerne hay (Medicago sativa) and Italian ryegrass hay (Lolium italicum) in the ovine digestive trace. British Journal of Nutrition 62: 493507.CrossRefGoogle Scholar
Holmes, C. W., McLean, N. A. and Lockyer, K. J. 1978. Changes in the rate of heat production of calves during grazing and eating. New Zealand Journal of Agricultural Research 21: 107112.CrossRefGoogle Scholar
Lachica, M., Aguilera, J. F. and Prieto, C. 1995. Energy expenditure related to the act of eating in Granadian goats given diets of different physical form. British Journal of Nutrition In press.Google Scholar
Leblanc, J., Cabanac, M. and Samson, P. 1984. Reduced postprandial heat production with gavage as compared with meal feeding in human subjects. American Journal of Physiology 246: E95–E101.Google ScholarPubMed
Marcenac, L. N. and Aublet, H. 1969. Encyclopédic du cheval. Librairie Maloine, Paris.Google Scholar
Meyer, H. von, Ahlswede, L. und Reinhardt, H. J. 1975. Untersuchungen über Fre βidauer, Kaufrequenz und Futterzerkleinerung beim Pferd. Deutsch Tierarztliche Wochenschrift 82: 5458.Google Scholar
Meyer, H. von, Coenen, M. and Probst, D. 1986. Beitrage zue Verdauungsphysiologie des Pferdes — 14 Mitteilung — Futtereinspeichelung und -passage im Kopfdarm des Pferdes. Zeitschrift fur Tierphysiologie, Tieremahrung und Futtermittelkunde 56: 171183.Google Scholar
Nacht, C. A., Christin, L., Temler, R., Chiolero, E., Jequier, E. and Acheson, K. J. 1987. Thermic effect of food: possible implication of parasympathetic nervous system. American Journal of Physiology 253: E481–E488.Google ScholarPubMed
Nicolaïdis, S. 1970. The prandial calorigenic effect. EXCERTA Medica International Congress 213: 216219.Google Scholar
Osuji, P. O. 1973. Ruminant energy metabolism: an analysis of the heat increment of feeding in sheep. Ph.D. thesis, Aberdeen University.Google Scholar
Osuji, P. O., Gordon, J. G. and Webster, A. J. F. 1975. Energy exchanges associated with eating and rumination in sheep given grass diets of different physical forms. British Journal of Nutrition 34: 59.CrossRefGoogle ScholarPubMed
Preshaw, R. M., Cook, A. R. and Grossman, M. I. 1966. Sham feeding and pancreatic secretion in the dog. Gastroenterology 50: 171178.CrossRefGoogle Scholar
Ruckebusch, Y. 1963. Research on the central control of alimentary behaviour in sheep. Thèse, Université de Lyon, France.Google Scholar
Statistical Analysis Systems Institute. 1987. Stat guide for personal computer. Statistical Analysis System Institute Inc., Cary, NC.Google Scholar
Summers, M., Carter, R. R., Early, R. J., Grovum, W. L. and Milligan, L. P. 1989. The ovine parotid gland — a model to compare in vivo and in vitro energy expenditures on ion transport and protein synthesis. In Energy metabolism of farm animals, proceedings of the eleventh symposium, Luntern, Netherlands. European Association for Animal Production, publication no. 43, p. 163166.Google Scholar
Utjanzew, W. 1911. Die energetische Aquivalente der Verdarungsarbeit bei den Wiederkauren (Schafe). Biochemische Zeitschrift 37: 475.Google Scholar
Vermorel, M., Bitar, A., Vernet, J. and Ortigues, I. 1995. Calorimètrie indirecte. 3. Contrôle de la validité des mesures des échanges respiratoires des animaux et des humains. Cahiers des Techniques I.N.R.A. 35: 6376.Google Scholar
Vermorel, M., Bouvier, J. C., Bonnet, Y. and Fauconneau, G. 1973. Construction et fonctionnement de 2 chambres respiratoires du type “circuit ouvert” pour jeunes bovins. Annales de Biologie animate, Biochimie et Biophysique 13: 659681.CrossRefGoogle Scholar
Vermorel, M. and Mormede, P. 1991. Energy cost of eating in ponies. In Energy metabolism of farm animals (ed. Wenk, C. and Boessinger, M.), European Association for Animal Production, publication no. 58, pp. 437440.Google Scholar
Webster, A. J. F. and Hays, F. L. 1968. Effects of beta adrenergic blockade on the heart rate and energy expenditure of sheep during feeding and during acute cold exposure. Canadian Journal of Physiology and Pharmacology 46: 577583.CrossRefGoogle ScholarPubMed
Webster, A. J. F. 1979. Energy cost of digestion and metabolism in the gut. In Digestive physiology and metabolism in ruminants. Proceedings of the fifth international symposium on ruminant physiology, Clermont-Ferrand (ed. Ruckebusch, Y. and Thivend, P.), pp. 469483. MTP Press, Lancaster.Google Scholar
Young, B. A. 1966. Energy expenditure and respiratory activity of sheep during feeding. Australian Journal of Agricultural Research 17: 355362.CrossRefGoogle Scholar
Young, J. B. and Landsberg, J. 1977. Stimulation of the sympathetic nervous system during sucrose feeding. Nature, London 269: 615617.CrossRefGoogle ScholarPubMed