Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T14:24:34.376Z Has data issue: false hasContentIssue false

Amino acid ileal digestibility of some grain legume seeds in growing chickens

Published online by Cambridge University Press:  02 September 2010

L. Pérez
Affiliation:
Estación Experimental del Zaidín (CSIC), Profesor Albareda, 1.18008 Granada, Spain
I. Fernández-Figares
Affiliation:
Estación Experimental del Zaidín (CSIC), Profesor Albareda, 1.18008 Granada, Spain
R. Nieto
Affiliation:
Estación Experimental del Zaidín (CSIC), Profesor Albareda, 1.18008 Granada, Spain
J. F. Aguilera
Affiliation:
Estación Experimental del Zaidín (CSIC), Profesor Albareda, 1.18008 Granada, Spain
C. Prieto
Affiliation:
Estación Experimental del Zaidín (CSIC), Profesor Albareda, 1.18008 Granada, Spain
Get access

Abstract

The apparent and true amino acid (AA) digestibility from soya-bean meal (SBM), vetch meal (VM), field pea meal (FPM) and bitter vetch meal (BVM) were determined in the lower ileum of growing chickens force-fed on semisynthetic diets (120 g crude protein and 13·1 MJ metabolizable energy per kg dry matter) based on each meal as the sole source of protein. The average apparent and true digestibility values were 0·82, 0·73, 0·76 and 0·60 and 0·90, 0·91, 0·87 and 0·74 for diets SBM, VM, FPM and BVM, respectively. Marked differences in AA digestibility among diets were found. The apparent digestibility of methionine, the most limiting essential AA in poultry diets, was significantly higher in diet SBM than in diets FPM and BVM (P < 0·05). It is concluded that the seeds of vetch and field pea may be suitable for inclusion in poultry diets as partial substitutes for soya bean. The use of bitter vetch is not recommended.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguilera, J. F., Prieto, C., Molina, E. and Lachica, M. 1988. A micromethod for routine determination of chromic oxide in nutrition studies. Analusis 16: 454457.Google Scholar
Bielorai, R., Harduf, Z., Iosif, B. and Alumot, E. 1983. Apparent amino acid absorption from feather meal by chicks. British Journal of Nutrition 49: 395399.CrossRefGoogle ScholarPubMed
Bielorai, R. and Iosif, B. 1987. Amino acid absorption and endogenous amino acid in the lower ileum and excreta of chicks. Journal of Nutrition 117: 14591462.CrossRefGoogle ScholarPubMed
Bielorai, R., Iosif, B. and Harduf, Z. 1991. Nitrogen, amino acid and starch absorption and endogenous nitrogen and amino acid excretion in chicks fed on diets containing maize as the sole source of protein. Animal Feed Science and Technology 33:1528.CrossRefGoogle Scholar
Bielorai, R., Iosif, B. and Neumark, H. 1985. Nitrogen absorption and endogenous nitrogen along the intestinal tract of chicks. Journal of Nutrition 115: 568572.CrossRefGoogle ScholarPubMed
Burr, H. K. 1975. Pulse proteins. In Protein nutritional quality of foods and feeds (ed. Friedman, M.), part 2, pp. 119134. Marcel Dekker, New York.Google Scholar
Cohen, S. A., Meys, M. and Tarvin, T. L. 1989. The Pico-Tag method. A manual of advanced techniques for amino acid analysis. Millipore Corporation, Bedford, Massachusetts.Google Scholar
Eggum, B. O. 1985. Digestibility of plant proteins: animal studies. In Digestibility and amino acid availability in cereals and oilseeds (ed. Finley, J. W., Hopkins, D. T.), pp. 275283. American Association of Cereal Chemists, St. Paul, Minnesota.Google Scholar
Food and Agriculture Organization of the United Nations. 1970. Amino acid content of foods and biological data on proteins. FAO, Rome.Google Scholar
Fonollá, J., Prieto, C. and Sanz, R. 1981. Influence of age on the nutrient utilization of diets for broilers. Animal Feed Science and Technology 6: 405411.CrossRefGoogle Scholar
Green, S., Bertrand, S. L., Duron, M. J. C. and Maillard, R. 1987a. Digestibilities of amino acids in maize, wheat and barley meals, determined with intact and caecectomised cockerels. British Poultry Science 28: 631641.CrossRefGoogle ScholarPubMed
Green, S., Bertrand, S. L., Duron, M. J. C. and Maillard, R. 1987b. Digestibilities of amino acids in soyabean, sunflower and groundnut meals, determined with intact and caecectomised cockerels. British Poultry Science 28: 643652.CrossRefGoogle ScholarPubMed
Green, S. and Kiener, T. 1989. Digestibilities of nitrogen and amino acids in soya-bean, sunflower, meat and rapeseed meals measured with pigs and poultry. Animal Production 48: 157179.CrossRefGoogle Scholar
Hopkins, D. T. 1981. Effects of variation in protein digestibility. In Protein quality in humans: assessment and in vitro estimation (ed. Bodwell, C. E., Adkins, J. S., Hopkins, D. T.), pp. 169193. AVI Publishing Co., Westport.Google Scholar
Institut National de la Recherche Agronomique. 1984. L'alimentation des animaux monogastriques: pore, lapin, volailles. INRA, Paris.Google Scholar
Johns, D. C., Low, C. K., Sedcole, J. R. and James, K. A. C. 1986. Determination of amino acid digestibility using caecectomised and intact adult cockerels. British Poultry Science 27: 451462.CrossRefGoogle ScholarPubMed
Kakade, M. L., Arnold, R. L., Liener, I. E. and Waibel, P. E. 1969. Unavailability of cystine from trypsin inhibitors as a factor of contributing to the poor nutritive value of navy beans. Journal of Nutrition 99: 3442.CrossRefGoogle Scholar
Kakade, M. L. and Evans, R. J. 1966. Growth inhibition of rats fed raw navy beans (Phaseolus vulgaris). Journal of Nutrition 90:191198.CrossRefGoogle ScholarPubMed
Leterme, P., Thewis, A., Beckers, Y. and Baudart, E. 1990. Apparent and true ileal digestibility of amino acids and nitrogen balance measured in pigs with ileo-rectal anastomosis of T-cannulas given a diet containing peas. Journal of the Science of Food and Agriculture 52: 485497.CrossRefGoogle Scholar
Liener, I. E. ed. 1980. Toxic constituents of plant foodstuffs. Academic Press, New York.Google Scholar
Likuski, H. J. A. and Dorrell, H. G. 1978. A bioassay for rapid determinations of amino acid availability values. Poultry Science 57:16581660.CrossRefGoogle Scholar
Mason, V. C. 1984. Metabolism of nitrogenous compounds in the large gut. Proceedings of the Nutrition Society 43: 4553.CrossRefGoogle ScholarPubMed
Moore, S. 1963. On the determination of cystine as cysteic acid. Journal Biological Chemistry 238: 235237.CrossRefGoogle Scholar
Muztar, A. J. and Slinger, S. J. 1980a. Effect of level of dietary fibre on nitrogen and amino acid excretion in the fasted mature rooster. Nutrition Reports International 22: 863868.Google Scholar
Muztar, A. J. and Slinger, S. J. 1980b. The effect of dry matter on metabolic and endogenous amino acid excretion in mature cockerels. Nutrition Reports International 22: 901905.Google Scholar
Muztar, A. J. and Slinger, S. J. 1981. Relationship between body weight and amino acid excretion in fasted mature cockerels. Poultry Science 60: 790794.CrossRefGoogle ScholarPubMed
O'Dell, B. L., Woods, W. D., Laerdal, O. A., Jeffray, A. M., Savage, J. E. 1960. Distribution of the major nitrogenous compounds and amino acids in chickens urine. Poultry Science 39: 426432.CrossRefGoogle Scholar
Parsons, C. M. 1986. Determination of digestible and available amino acids in meat meal using conventional and caecectomized cockerels or chick growth assays. British Journal of Nutrition 56: 227240.CrossRefGoogle ScholarPubMed
Roy, D. N. 1981. Toxic amino acids and protein from Lathyrus plants and other leguminous species: literature review. Nutrition Abstracts and Reviews, Series A 51: 691704.Google Scholar
Salter, D. N. 1973. The influence of gut micro-organisms on utilization of dietary protein. Proceedings of the Nutrition Society 32:6571.CrossRefGoogle ScholarPubMed
Sarwar, G. and Peace, R. W. 1986. Comparisons between true digestibility of total nitrogen and limiting amino acids in vegetable protein fed to rats. Journal of Nutrition 116: 11721184.CrossRefGoogle ScholarPubMed
Sibbald, I. R. 1979. A bioassay for available amino acids and true metabolizable energy in feedingstuffs. Poultry Science 58: 668673.CrossRefGoogle Scholar
Sibbald, I. R. 1980. The effects of dietary cellulose and sand on the combined metabolic plus endogenous energy and amino acid outputs of adult cockerels. Poultry Science 59: 836844.Google Scholar
Statistical Graphics Corporation. 1986. Statgraphics. Statistical Graphic System. Statistical Graphics Corporation, Maryland.Google Scholar
Tanskley, T. D. and Knabe, D. A. 1985. Direct measurements of amino acid digestibility in swine. In Digestibility and amino acid availability in cereals and oilseeds (ed. Finley, J. W., Hopkins, D. T.), pp. 259273. American Association of Cereal Chemists, St. Paul, Minnesota.Google Scholar
Tavemer, M. R., Hume, I. D. and Farrell, D. J. 1981. Availability to pigs of amino acids in cereal grains. 2. Apparent and true ileal availability. British Journal of Nutrition 46:159171.Google Scholar