Hostname: page-component-5f745c7db-szhh2 Total loading time: 0 Render date: 2025-01-06T06:03:05.914Z Has data issue: true hasContentIssue false

Interspecies and intraspecies transmission of influenza A viruses: viral, host and environmental factors

Published online by Cambridge University Press:  01 July 2010

Hadi M. Yassine
Affiliation:
Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA
Chang-Won Lee
Affiliation:
Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA
Renukaradhya Gourapura
Affiliation:
Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA
Yehia M. Saif*
Affiliation:
Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA
*
Corresponding author. E-mail: [email protected]

Abstract

Influenza A viruses are enveloped viruses belonging to the family Orthomyxoviridae that encompasses four more genera: Influenza B, Influenza C, Isavirus and Thogotovirus. Type A viruses belong to the only genus that is highly infectious to a variety of mammalian and avian species. They are divided into subtypes based on two surface glycoproteins, the hemagglutinin (HA) and neuraminidase (NA). So far, 16 HA and 9 NA subtypes have been identified worldwide, making a possible combination of 144 subtypes between both proteins. Generally, individual viruses are host-specific, however, interspecies transmission of influenza A viruses is not uncommon. All of the HA and NA subtypes have been isolated from wild birds; however, infections in humans and other mammalian species are limited to a few subtypes. The replication of individual influenza A virus in a specific host is dependent on many factors including, viral proteins, host system and environmental conditions. In this review, the key findings that contribute to the transmission of influenza A viruses amongst different species are summarized.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, SC, Xing, Z, Li, J and Cardona, CJ (2009). Immune-related gene expression in response to H11N9 low pathogenic avian influenza virus infection in chicken and Pekin duck peripheral blood mononuclear cells. Molecular Immunology 46: 17441749.CrossRefGoogle ScholarPubMed
Alexander, DJ (2000). A review of avian influenza in different bird species. Veterinary Microbiology 74: 313.CrossRefGoogle ScholarPubMed
Alexander, DJ (2007). An overview of the epidemiology of avian influenza. Vaccine 25: 56375644.CrossRefGoogle ScholarPubMed
Alexander, DJ, Parsons, G and Manvell, RJ (1986). Experimental assessment of the pathogenicity of eight avian influenza A viruses of H5 subtype for chickens, turkeys, ducks and quail. Avian Pathology 15: 647662.CrossRefGoogle ScholarPubMed
Almond, JW (1977). A single gene determines the host range of influenza virus. Nature 270: 617618.CrossRefGoogle ScholarPubMed
Amonsin, A, Payungporn, S, Theamboonlers, A, Thanawongnuwech, R, Suradhat, S, Pariyothorn, N, Tantilertcharoen, R, Damrongwantanapokin, S, Buranathai, C, Chaisingh, A, Songserm, T and Poovorawan, Y (2006). Genetic characterization of H5N1 influenza A viruses isolated from zoo tigers in Thailand. Virology 344: 480491.CrossRefGoogle ScholarPubMed
Ariel Pereda, JC, Quiroga, MA, Baumeister, E, Insarralde, L, Ibar, M, Sanguinetti, R, Cannilla, ML, Franzese, D, Escobar Cabrera, OE, Craig, MI, Rimondi, A, Machuca, M, Debenedetti, RT, Zenobi, C, Barral, L, Balzano, R, Capalbo, S, Risso, A and Perfumo, CJ (2010). Pandemic (H1N1) 2009 Outbreak on a Pig Farm, Argentina. Emerging Infectious Diseases [Available online at http://www.cdc.gov/eid/content/16/12/pdfs/09-1230.pdf].Google Scholar
Avalos, RT, Yu, Z and Nayak, DP (1997). Association of influenza virus NP and M1 proteins with cellular cytoskeletal elements in influenza virus-infected cells. Journal of Virology 71: 29472958.CrossRefGoogle ScholarPubMed
AVMA (2010). 2009 H1N1 Flu Virus Outbreak. In: Public Health [Available online at http://www.avma.org/public_health/influenza/new_virus/default.asp].Google Scholar
Baigent, SJ and McCauley, JW (2003). Influenza type A in humans, mammals and birds: determinants of virus virulence, host-range and interspecies transmission. Bioessays 25: 657671.CrossRefGoogle ScholarPubMed
Banks, J, Speidel, EC, McCauley, JW and Alexander, DJ (2000). Phylogenetic analysis of H7 haemagglutinin subtype influenza A viruses. Archives of Virology 145: 10471058.CrossRefGoogle ScholarPubMed
Banks, J, Speidel, ES, Moore, E, Plowright, L, Piccirillo, A, Capua, I, Cordioli, P, Fioretti, A and Alexander, DJ (2001). Changes in the haemagglutinin and the neuraminidase genes prior to the emergence of highly pathogenic H7N1 avian influenza viruses in Italy. Archives of Virology 146: 963973.CrossRefGoogle Scholar
Basler, CF (2007). Influenza viruses: basic biology and potential drug targets. Infectious Disorders Drug Targets 7: 282293.CrossRefGoogle ScholarPubMed
Bean, B, Moore, BM, Sterner, B, Peterson, LR, Gerding, DN and JrBalfour, HH (1982). Survival of influenza viruses on environmental surfaces. Journal of Infectious Diseases 146: 4751.CrossRefGoogle ScholarPubMed
Belser, JA, Wadford, DA, Xu, J, Katz, JM and Tumpey, TM (2009). Ocular infection of mice with influenza A (H7) viruses: a site of primary replication and spread to the respiratory tract. Journal of Virology 83: 70757084.CrossRefGoogle ScholarPubMed
Berhane, Y, Hisanaga, T, Kehler, H, Neufeld, J, Manning, L, Argue, C, Handel, K, Hooper-McGrevy, K, Jonas, M, Robinson, J, Webster, RG and Pasick, J (2009). Highly pathogenic avian influenza virus A (H7N3) in domestic poultry, Saskatchewan, Canada, 2007. Emerging Infectious Diseases 15: 14921495.CrossRefGoogle ScholarPubMed
Bernasconi, D, Schultz, U and Staeheli, P (1995). The interferon-induced Mx protein of chickens lacks antiviral activity. Journal of Interferon and Cytokine Research 15: 4753.CrossRefGoogle ScholarPubMed
Bouvier, NM and Palese, P (2008). The biology of influenza viruses. Vaccine 26 (suppl. 4): D49D53.CrossRefGoogle ScholarPubMed
Brownstein, JS, Wolfe, CJ and Mandl, KD (2006). Empirical evidence for the effect of airline travel on inter-regional influenza spread in the United States. PLoS Medicine 3: e401.CrossRefGoogle ScholarPubMed
Buckler-White, AJ, Naeve, CW and Murphy, BR (1986). Characterization of a gene coding for M proteins which is involved in host range restriction of an avian influenza A virus in monkeys. Journal of Virology 57: 697700.CrossRefGoogle ScholarPubMed
Campitelli, L, Donatelli, I, Foni, E, Castrucci, MR, Fabiani, C, Kawaoka, Y, Krauss, S and Webster, RG (1997). Continued evolution of H1N1 and H3N2 influenza viruses in pigs in Italy. Virology 232: 310318.CrossRefGoogle ScholarPubMed
Cauchemez, S, Donnelly, CA, Reed, C, Ghani, AC, Fraser, C, Kent, CK, Finelli, L and Ferguson, NM (2009). Household transmission of 2009 pandemic influenza A (H1N1) virus in the United States. New England Journal of Medicine 361: 26192627.CrossRefGoogle ScholarPubMed
Chan, MC, Chan, RW, Yu, WC, Ho, CC, Chui, WH, Lo, CK, Yuen, KM, Guan, YI, Nicholls, JM and Peiris, JS (2009). Influenza H5N1 virus infection of polarized human alveolar epithelial cells and lung microvascular endothelial cells. Respiratory Research 10: 102.CrossRefGoogle ScholarPubMed
Chen, BJ, Leser, GP, Morita, E and Lamb, RA (2007). Influenza virus hemagglutinin and neuraminidase, but not the matrix protein, are required for assembly and budding of plasmid-derived virus-like particles. Journal of Virology 81: 71117123.CrossRefGoogle Scholar
Chen, GW, Chang, SC, Mok, CK, Lo, YL, Kung, YN, Huang, JH, Shih, YH, Wang, JY, Chiang, C, Chen, CJ and Shih, SR (2006). Genomic signatures of human versus avian influenza A viruses. Emerging Infectious Diseases 12: 13531360.CrossRefGoogle ScholarPubMed
Chen, GW and Shih, SR (2009). Genomic signatures of influenza A pandemic (H1N1) 2009 virus. Emerging Infectious Diseases 15: 18971903.CrossRefGoogle ScholarPubMed
Chen, LM, Davis, CT, Zhou, H, Cox, NJ and Donis, RO (2008). Genetic compatibility and virulence of reassortants derived from contemporary avian H5N1 and human H3N2 influenza A viruses. PLoS Pathogens 4: e1000072.CrossRefGoogle ScholarPubMed
Choi, YK, Lee, JH, Erickson, G, Goyal, SM, Joo, HS, Webster, RG and Webby, RJ (2004). H3N2 influenza virus transmission from swine to turkeys, United States. Emerging Infectious Diseases 10: 21562160.CrossRefGoogle ScholarPubMed
Cianci, C, Tiley, L and Krystal, M (1995). Differential activation of the influenza virus polymerase via template RNA binding. Journal of Virology 69: 39953999.CrossRefGoogle ScholarPubMed
CIDRAP (2009a). In: Wappes, J (ed.). Avian Influenza (Bird Flu): Agricultural Wild Life Concern. Vol. 2009. Minneapolis, MN: Center for Infectious Disease Research and Policy (CIDRAP). [Available online at http://www.cidrap.umn.edu/cidrap/content/influenza/avianflu/biofacts/avflu.html].Google Scholar
CIDRAP (2009b). Researchers estimate relatively low H1N1 fatality rate. In: Robert, Ross (ed.) Influenza. Minneapolis, MN: Center for Infectious Disease Research & Policy (CIDRAP).Google Scholar
CNN (2010). CDC: as many as 80 million infected by H1N1. In: CNN Health [Available online at http://www.cnn.com/2010/HEALTH/01/16/h1n1.numbers/index.html].Google Scholar
Conenello, GM, Zamarin, D, Perrone, LA, Tumpey, T and Palese, P (2007). A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. PLoS Pathogens 3: 14141421.CrossRefGoogle ScholarPubMed
Cong, YL, Pu, J, Liu, QF, Wang, S, Zhang, GZ, Zhang, XL, Fan, WX, Brown, EG and Liu, JH (2007). Antigenic and genetic characterization of H9N2 swine influenza viruses in China. Journal of General Virology 88: 20352041.CrossRefGoogle ScholarPubMed
Crawford, PC, Dubovi, EJ, Castleman, WL, Stephenson, I, Gibbs, EP, Chen, L, Smith, C, Hill, RC, Ferro, P, Pompey, J, Bright, RA, Medina, MJ, Johnson, CM, Olsen, CW, Cox, NJ, Klimov, AI, Katz, JM and Donis, RO (2005). Transmission of equine influenza virus to dogs. Science 310: 482485.CrossRefGoogle ScholarPubMed
Daniels, PS, Jeffries, S, Yates, P, Schild, GC, Rogers, GN, Paulson, JC, Wharton, SA, Douglas, AR, Skehel, JJ and Wiley, DC (1987). The receptor-binding and membrane-fusion properties of influenza virus variants selected using anti-haemagglutinin monoclonal antibodies. EMBO Journal 6: 14591465.CrossRefGoogle ScholarPubMed
Donaldson, LJ, Rutter, PD, Ellis, BM, Greaves, FE, Mytton, OT, Pebody, RG and Yardley, IE (2009). Mortality from pandemic A/H1N1 2009 influenza in England: public health surveillance study. British Medical Journal 339: b5213.CrossRefGoogle ScholarPubMed
Druett, HA and May, KR (1968). Unstable germicidal pollutant in rural air. Nature 220: 395396.CrossRefGoogle ScholarPubMed
Dunham, EJ, Dugan, VG, Kaser, EK, Perkins, SE, Brown, IH, Holmes, EC and Taubenberger, JK (2009). Different evolutionary trajectories of European avian-like and classical swine H1N1 influenza A viruses. Journal of Virology 11: 54855494.CrossRefGoogle Scholar
Fechter, P, Mingay, L, Sharps, J, Chambers, A, Fodor, E and Brownlee, GG (2003). Two aromatic residues in the PB2 subunit of influenza A RNA polymerase are crucial for cap binding. Journal of Biological Chemistry 278: 2038120388.CrossRefGoogle ScholarPubMed
Fodor, E, Mingay, LJ, Crow, M, Deng, T and Brownlee, GG (2003). A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase promotes the generation of defective interfering RNAs. Journal of Virology 77: 50175020.CrossRefGoogle ScholarPubMed
Fouchier, RA, Schneeberger, PM, Rozendaal, FW, Broekman, JM, Kemink, SA, Munster, V, Kuiken, T, Rimmelzwaan, GF, Schutten, M, Van Doornum, GJ, Koch, G, Bosman, A, Koopmans, M and Osterhaus, AD (2004). Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proceedings of the National Academy of Sciences, USA 101: 13561361.CrossRefGoogle Scholar
Gabriel, G, Herwig, A and Klenk, HD (2008). Interaction of polymerase subunit PB2 and NP with importin alpha1 is a determinant of host range of influenza A virus. PLoS Pathogens 4: e11.CrossRefGoogle ScholarPubMed
Gamblin, SJ, Haire, LF, Russell, RJ, Stevens, DJ, Xiao, B, Ha, Y, Vasisht, N, Steinhauer, DA, Daniels, RS, Elliot, A, Wiley, DC and Skehel, JJ (2004). The structure and receptor binding properties of the 1918 influenza hemagglutinin. Science 303: 18381842.CrossRefGoogle ScholarPubMed
Gao, P, Watanabe, S, Ito, T, Goto, H, Wells, K, McGregor, M, Cooley, AJ and Kawaoka, Y (1999). Biological heterogeneity, including systemic replication in mice, of H5N1 influenza A virus isolates from humans in Hong Kong. Journal of Virology 73: 31843189.CrossRefGoogle ScholarPubMed
Gao, Y, Zhang, Y, Shinya, K, Deng, G, Jiang, Y, Li, Z, Guan, Y, Tian, G, Li, Y, Shi, J, Liu, L, Zeng, X, Bu, Z, Xia, X, Kawaoka, Y and Chen, H (2009). Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. PLoS Pathogens 5: e1000709.CrossRefGoogle Scholar
Gibbs, AJ, Armstrong, JS and Downie, JC (2009). From where did the 2009 ‘swine-origin’ influenza A virus (H1N1) emerge? Virology Journal 6: 207.CrossRefGoogle ScholarPubMed
Gomez-Puertas, P, Albo, C, Perez-Pastrana, E, Vivo, A and Portela, A (2000). Influenza virus matrix protein is the major driving force in virus budding. Journal of Virology 74: 1153811547.CrossRefGoogle ScholarPubMed
Goto, H, Wells, K, Takada, A and Kawaoka, Y (2001). Plasminogen-binding activity of neuraminidase determines the pathogenicity of influenza A virus. Journal of Virology 75: 92979301.CrossRefGoogle ScholarPubMed
Gray, GC, McCarthy, T, Capuano, AW, Setterquist, SF, Olsen, CW and Alavanja, MC (2007). Swine workers and swine influenza virus infections. Emerging Infectious Diseases 13: 18711878.CrossRefGoogle ScholarPubMed
Guo, YJ, Wen, LY, Wang, M, Li, Z, Zhang, Y and Guo, JF (2004). [Characterization of HA and NA genes of swine influenza A (H9N2) viruses]. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi 18: 711.Google ScholarPubMed
Ha, Y, Stevens, DJ, Skehel, JJ and Wiley, DC (2002). H5 avian and H9 swine influenza virus haemagglutinin structures: possible origin of influenza subtypes. EMBO Journal 21: 865875.CrossRefGoogle ScholarPubMed
Hagen, M, Chung, TD, Butcher, JA and Krystal, M (1994). Recombinant influenza virus polymerase: requirement of both 5′ and 3′ viral ends for endonuclease activity. Journal of Virology 68: 15091515.CrossRefGoogle ScholarPubMed
Haller, O, Staeheli, P and Kochs, G (2007). Interferon-induced Mx proteins in antiviral host defense. Biochimie 89: 812818.CrossRefGoogle ScholarPubMed
Halverson, DA, Frame, DD, Friendshuh, AJ and Shaw, DP (1998). Outbreaks of Low Pathogenicity Avian Influenza in USA. Proceedings of Fourth International Symposium on Avian Influenza, 1998. Avian Diseases, Special Issue (S1) 47: 3646.Google Scholar
Herlocher, ML, Carr, J, Ives, J, Elias, S, Truscon, R, Roberts, N and Monto, AS (2002). Influenza virus carrying an R292K mutation in the neuraminidase gene is not transmitted in ferrets. Antiviral Research 54: 99111.CrossRefGoogle Scholar
Hinshaw, VS, Bean, WJ, Geraci, J, Fiorelli, P, Early, G and Webster, RG (1986). Characterization of two influenza A viruses from a pilot whale. Journal of Virology 58: 655656.CrossRefGoogle ScholarPubMed
Hinshaw, VS, Webster, RG, Naeve, CW and Murphy, BR (1983). Altered tissue tropism of human-avian reassortant influenza viruses. Virology 128: 260263.CrossRefGoogle ScholarPubMed
Hossain, MJ, Hickman, D and Perez, DR (2008). Evidence of expanded host range and mammalian-associated genetic changes in a duck H9N2 influenza virus following adaptation in quail and chickens. PLoS ONE 3: e3170.CrossRefGoogle Scholar
Huarte, M, Falcon, A, Nakaya, Y, Ortin, J, Garcia-Sastre, A and Nieto, A (2003). Threonine 157 of influenza virus PA polymerase subunit modulates RNA replication in infectious viruses. Journal of Virology 77: 60076013.CrossRefGoogle ScholarPubMed
Inkster, MD, Hinshaw, VS and Schulze, IT (1993). The hemagglutinins of duck and human H1 influenza viruses differ in sequence conservation and in glycosylation. Journal of Virology 67: 74367443.CrossRefGoogle ScholarPubMed
Ito, T, Couceiro, JN, Kelm, S, Baum, LG, Krauss, S, Castrucci, MR, Donatelli, I, Kida, H, Paulson, JC, Webster, RG and Kawaoka, Y (1998). Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. Journal of Virology 72: 73677373.CrossRefGoogle ScholarPubMed
Ito, T, Suzuki, Y, Suzuki, T, Takada, A, Horimoto, T, Wells, K, Kida, H, Otsuki, K, Kiso, M, Ishida, H and Kawaoka, Y (2000). Recognition of N-glycolylneuraminic acid linked to galactose by the alpha2,3 linkage is associated with intestinal replication of influenza A virus in ducks. Journal of Virology 74: 93009305.CrossRefGoogle ScholarPubMed
Ives, JA, Carr, JA, Mendel, DB, Tai, CY, Lambkin, R, Kelly, L, Oxford, JS, Hayden, FG and Roberts, NA (2002). The H274Y mutation in the influenza A/H1N1 neuraminidase active site following oseltamivir phosphate treatment leave virus severely compromised both in vitro and in vivo. Antiviral Research 55: 307317.CrossRefGoogle ScholarPubMed
Karasin, AI, Olsen, CW, Brown, IH, Carman, S, Stalker, M and Josephson, G (2000). H4N6 influenza virus isolated from pigs in Ontario. Canadian Veterinary Journal 41: 938939.Google ScholarPubMed
Kawaoka, Y, Chambers, TM, Sladen, WL and Webster, RG (1988). Is the gene pool of influenza viruses in shorebirds and gulls different from that in wild ducks? Virology 163: 247250.CrossRefGoogle ScholarPubMed
Kawaoka, Y, Krauss, S and Webster, RG (1989). Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. Journal of Virology 63: 46034608.CrossRefGoogle ScholarPubMed
Kida, H, Ito, T, Yasuda, J, Shimizu, Y, Itakura, C, Shortridge, KF, Kawaoka, Y and Webster, RG (1994). Potential for transmission of avian influenza viruses to pigs. Journal of General Virology 75 (Pt 9): 21832188.CrossRefGoogle ScholarPubMed
Kida, H, Yanagawa, R and Matsuoka, Y (1980). Duck influenza lacking evidence of disease signs and immune response. Infection and Immunity 30: 547553.CrossRefGoogle ScholarPubMed
Kilbourne, ED (2006). Influenza pandemics of the 20th century. Emerging Infectious Diseases 12: 914.CrossRefGoogle Scholar
Kim, JK, Negovetich, NJ, Forrest, HL and Webster, RG (2009). Ducks: the “Trojan horses” of H5N1 influenza. Influenza Other Respiratory Viruses 3: 121128.CrossRefGoogle ScholarPubMed
Klenk, HD, Rott, R, Orlich, M and Blodorn, J (1975). Activation of influenza A viruses by trypsin treatment. Virology 68: 426439.CrossRefGoogle ScholarPubMed
Ko, JH, Jin, HK, Asano, A, Takada, A, Ninomiya, A, Kida, H, Hokiyama, H, Ohara, M, Tsuzuki, M, Nishibori, M, Mizutani, M and Watanabe, T (2002). Polymorphisms and the differential antiviral activity of the chicken Mx gene. Genome Research 12: 595601.CrossRefGoogle ScholarPubMed
Koopmans, M, Wilbrink, B, Conyn, M, Natrop, G, van der Nat, H, Vennema, H, Meijer, A, van Steenbergen, J, Fouchier, R, Osterhaus, A and Bosman, A (2004). Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. Lancet 363: 587593.CrossRefGoogle ScholarPubMed
Kuchipudi, SV, Nelli, R, White, GA, Bain, M, Chang, KC and Dunham, S (2009). Differences in influenza virus receptors in chickens and ducks: Implications for interspecies transmission. Journal of Molecular and Genetic Medicine 3: 143151.CrossRefGoogle ScholarPubMed
Kuiken, T, Holmes, EC, McCauley, J, Rimmelzwaan, GF, Williams, CS and Grenfell, BT (2006). Host species barriers to influenza virus infections. Science 312: 394397.CrossRefGoogle ScholarPubMed
Labadie, K, Dos Santos Afonso, E, Rameix-Welti, MA, van der Werf, S and Naffakh, N (2007). Host-range determinants on the PB2 protein of influenza A viruses control the interaction between the viral polymerase and nucleoprotein in human cells. Virology 362: 271282.CrossRefGoogle ScholarPubMed
Laudert, E, Sivanandan, V, Halvorson, D, Shaw, D and Webster, RG (1993). Biological and molecular characterization of H13N2 influenza type A viruses isolated from turkeys and surface water. Avian Diseases 37: 793799.CrossRefGoogle ScholarPubMed
Lazarowitz, SG and Choppin, PW (1975). Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology 68: 440454.CrossRefGoogle Scholar
Le, QM, Sakai-Tagawa, Y, Ozawa, M, Ito, M and Kawaoka, Y (2009). Selection of H5N1 influenza virus PB2 during replication in humans. Journal of Virology 10: 52785281.CrossRefGoogle Scholar
Lekcharoensuk, P, Lager, KM, Vemulapalli, R, Woodruff, M, Vincent, AL and Richt, JA (2006). Novel swine influenza virus subtype H3N1, United States. Emerging Infectious Diseases 12: 787794.CrossRefGoogle ScholarPubMed
Lin, YP, Shaw, M, Gregory, V, Cameron, K, Lim, W, Klimov, A, Subbarao, K, Guan, Y, Krauss, S, Shortridge, K, Webster, R, Cox, N and Hay, A (2000). Avian-to-human transmission of H9N2 subtype influenza A viruses: relationship between H9N2 and H5N1 human isolates. Proceedings of the National Academy of Sciences, USA 97: 96549658.CrossRefGoogle ScholarPubMed
Lipatov, AS, Kwon, YK, Sarmento, LV, Lager, KM, Spackman, E, Suarez, DL and Swayne, DE (2008). Domestic pigs have low susceptibility to H5N1 highly pathogenic avian influenza viruses. PLoS Pathogens 4: e1000102.CrossRefGoogle ScholarPubMed
Loosli, CG, Lemon, HM, Robertson, OH and Apple, E (1943). Experimental airborne influenza infection. Proceedings of the Society of Experimental Biology 53: 205206.CrossRefGoogle Scholar
Lowen, AC, Mubareka, S, Steel, J and Palese, P (2007). Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathogens 3: 14701476.CrossRefGoogle ScholarPubMed
Lowen, AC, Steel, J, Mubareka, S and Palese, P (2008). High temperature (30°C) blocks aerosol but not contact transmission of influenza virus. Journal of Virology 82: 56505652.CrossRefGoogle Scholar
Lu, CY, Lu, JH, Chen, WQ, Jiang, LF, Tan, BY, Ling, WH, Zheng, BJ and Sui, HY (2008). Potential infections of H5N1 and H9N2 avian influenza do exist in Guangdong populations of China. Chinese Medical Journal (Engl) 121: 20502053.CrossRefGoogle ScholarPubMed
Luo, G, Chung, J and Palese, P (1993). Alterations of the stalk of the influenza virus neuraminidase: deletions and insertions. Virus Research 29: 141153.Google ScholarPubMed
Ma, W, Vincent, AL, Gramer, MR, Brockwell, CB, Lager, KM, Janke, BH, Gauger, PC, Patnayak, DP, Webby, RJ and Richt, JA (2007). Identification of H2N3 influenza A viruses from swine in the United States. Proceedings of the National Academy of Sciences, USA 104: 2094920954.CrossRefGoogle ScholarPubMed
Maas, R, Tacken, M, Ruuls, L, Koch, G, van Rooij, E and Stockhofe-Zurwieden, N (2007). Avian influenza (H5N1) susceptibility and receptors in dogs. Emerging Infectious Diseases 13: 12191221.CrossRefGoogle ScholarPubMed
Maines, TR, Lu, XH, Erb, SM, Edwards, L, Guarner, J, Greer, PW, Nguyen, DC, Szretter, KJ, Chen, LM, Thawatsupha, P, Chittaganpitch, M, Waicharoen, S, Nguyen, DT, Nguyen, T, Nguyen, HH, Kim, JH, Hoang, LT, Kang, C, Phuong, LS, Lim, W, Zaki, S, Donis, RO, Cox, NJ, Katz, JM and Tumpey, TM (2005). Avian influenza (H5N1) viruses isolated from humans in Asia in 2004 exhibit increased virulence in mammals. Journal of Virology 79: 1178811800.CrossRefGoogle ScholarPubMed
Matlin, KS, Reggio, H, Helenius, A and Simons, K (1981). Infectious entry pathway of influenza virus in a canine kidney cell line. Journal of Cell Biology 91: 601613.CrossRefGoogle Scholar
Matrosovich, M, Klenk, HD and Kawaoka, Y (2006a). Influenza Virology, Current topics: Receptor Specificity, Host-range, and Pathogenicity of Influenza Viruses. Norfolk, England: Caister Academic Press.Google Scholar
Matrosovich, M, Tuzikov, A, Bovin, N, Gambaryan, A, Klimov, A, Castrucci, MR, Donatelli, I and Kawaoka, Y (2000). Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. Journal of Virology 74: 85028512.CrossRefGoogle ScholarPubMed
Matrosovich, M, Zhou, N, Kawaoka, Y and Webster, R (1999). The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. Journal of Virology 73: 11461155.CrossRefGoogle ScholarPubMed
Matrosovich, MN, Klenk, HD and Kawaoka, Y (2006b). Influenza Virology, Current Topics: Receptor Specificity, Host range, and Pathogenicity of Influenza Viruses. Norfolk, England: Caister Academic Press.Google Scholar
Matrosovich, MN, Krauss, S and Webster, RG (2001). H9N2 influenza A viruses from poultry in Asia have human virus-like receptor specificity. Virology 281: 156162.CrossRefGoogle ScholarPubMed
McCown, MF and Pekosz, A (2005). The influenza A virus M2 cytoplasmic tail is required for infectious virus production and efficient genome packaging. Journal of Virology 79: 35953605.CrossRefGoogle ScholarPubMed
Mitnaul, LJ, Matrosovich, MN, Castrucci, MR, Tuzikov, AB, Bovin, NV, Kobasa, D and Kawaoka, Y (2000). Balanced hemagglutinin and neuraminidase activities are critical for efficient replication of influenza A virus. Journal of Virology 74: 60156020.CrossRefGoogle ScholarPubMed
Mochalova, L, Gambaryan, A, Romanova, J, Tuzikov, A, Chinarev, A, Katinger, D, Katinger, H, Egorov, A and Bovin, N (2003). Receptor-binding properties of modern human influenza viruses primarily isolated in Vero and MDCK cells and chicken embryonated eggs. Virology 313: 473480.CrossRefGoogle ScholarPubMed
Mohan, R, Saif, YM, Erickson, GA, Gustafson, GA and Easterday, BC (1981). Serologic and epidemiologic evidence of infection in turkeys with an agent related to the swine influenza virus. Avian Diseases 25: 1116.CrossRefGoogle Scholar
Mumford, E, Bishop, J, Hendrickx, S, Embarek, PB and Perdue, M (2007). Avian influenza H5N1: risks at the human-animal interface. Food and Nutrition Bulletin 28: S357S363.CrossRefGoogle ScholarPubMed
Murphy, BR, Buckler-White, AJ, London, WT and Snyder, MH (1989). Characterization of the M protein and nucleoprotein genes of an avian influenza A virus which are involved in host range restriction in monkeys. Vaccine 7: 557561.CrossRefGoogle Scholar
Naeve, CW, Hinshaw, VS and Webster, RG (1984). Mutations in the hemagglutinin receptor-binding site can change the biological properties of an influenza virus. Journal of Virology 51: 567569.CrossRefGoogle ScholarPubMed
Naffakh, N, Tomoiu, A, Rameix-Welti, MA and van der Werf, S (2008). Host restriction of avian influenza viruses at the level of the ribonucleoproteins. Annual Review of Microbiology 62: 403424.CrossRefGoogle ScholarPubMed
Nelli, RK, Kuchipudi, SV, White, GA, Perez, BB, Dunham, SP and Chang, KC (2010). Comparative distribution of human and avian type sialic acid influenza receptors in the pig. BMC Veterinary Research 6: 4.CrossRefGoogle ScholarPubMed
Neumann, G, Brownlee, GG, Fodor, E and Kawaoka, Y (2004). Orthomyxovirus replication, transcription, and polyadenylation. Current Topics in Microbiology and Immunology 283: 121143.Google ScholarPubMed
Neumann, G and Kawaoka, Y (2006). Host range restriction and pathogenicity in the context of influenza pandemic. Emerging Infectious Diseases 12: 881886.CrossRefGoogle ScholarPubMed
Newman, AP, Reisdorf, E, Beinemann, J, Uyeki, TM, Balish, A, Shu, B, Lindstrom, S, Achenbach, J, Smith, C and Davis, JP (2008). Human case of swine influenza A (H1N1) triple reassortant virus infection, Wisconsin. Emerging Infectious Diseases 14: 14701472.CrossRefGoogle Scholar
Nicholls, JM, Chan, MC, Chan, WY, Wong, HK, Cheung, CY, Kwong, DL, Wong, MP, Chui, WH, Poon, LL, Tsao, SW, Guan, Y and Peiris, JS (2007). Tropism of avian influenza A (H5N1) in the upper and lower respiratory tract. Nature Medicine 13: 147149.CrossRefGoogle ScholarPubMed
Nielsen, O, Clavijo, A and Boughen, JA (2001). Serologic evidence of influenza A infection in marine mammals of arctic Canada. Journal of Wildlife Diseases 37: 820825.CrossRefGoogle ScholarPubMed
Ninomiya, A, Takada, A, Okazaki, K, Shortridge, KF and Kida, H (2002). Seroepidemiological evidence of avian H4, H5, and H9 influenza A virus transmission to pigs in southeastern China. Veterinary Microbiology 88: 107114.CrossRefGoogle ScholarPubMed
Nobusawa, E, Aoyama, T, Kato, H, Suzuki, Y, Tateno, Y and Nakajima, K (1991). Comparison of complete amino acid sequences and receptor-binding properties among 13 serotypes of hemagglutinins of influenza A viruses. Virology 182: 475485.CrossRefGoogle ScholarPubMed
Olofsson, S, Kumlin, U, Dimock, K and Arnberg, N (2005). Avian influenza and sialic acid receptors: more than meets the eye? Lancet Infectious Diseases 5: 184188.CrossRefGoogle ScholarPubMed
Olsen, B, Munster, VJ, Wallensten, A, Waldenstrom, J, Osterhaus, AD and Fouchier, RA (2006). Global patterns of influenza a virus in wild birds. Science 312: 384388.CrossRefGoogle ScholarPubMed
Olsen, CW (2002). The emergence of novel swine influenza viruses in North America. Virus Research 85: 199210.CrossRefGoogle ScholarPubMed
Olsen, CW, Brammer, L, Easterday, BC, Arden, N, Belay, E, Baker, I and Cox, NJ (2002). Serologic evidence of H1 swine influenza virus infection in swine farm residents and employees. Emerging Infectious Diseases 8: 814819.CrossRefGoogle ScholarPubMed
oregonvma (2010). H1N1 and Animals: New York Dog Confirmed First US H1N1 Canine Case. Oregon: Oregon Veterinary Medical Association.Google Scholar
Palese, P and Shaw, M (2007a). Fields Virology: Orthomyxoviridae. 5th edn.Philadelphia, PA: Lippincott Williams and Wilkins.Google Scholar
Palese, P and Shaw, M (2007b). Fields Virology: Orthomyxoviridae, The Viruses and Their Replication, 5th edn.Philadelphia, PA: Lippincott Williams & Wilkins.Google Scholar
Palese, P, Tobita, K, Ueda, M and Compans, RW (1974). Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology 61: 397410.CrossRefGoogle ScholarPubMed
Pasick, J, Berhane, Y, Hisanaga, T, Kehler, H, Cottom-Birt, C, Handel, K, Argue, C and Leighton, T (2009). 2007 Canadian H7N3 outbreak. In: 7th International Symposium on Avian Influenza: Avian Influenza in Poultry and Wild Birds.Google Scholar
Pasick, J, Berhane, Y, Hisanaga, T, Kehler, H, Hooper-McGrevy, K, Handel, K, Neufeld, J, Argue, C and Leighton, F (2010). Diagnostic Test Results and Pathology Associated with the 2007 Canadian H7N3 Highly Pathogenic Avian Influenza Outbreak. In: 7th International Symposium on Avian Influenza: Avian Influenza in Poultry and Wild Birds, Athens, Georgia, USA. Avian Diseases, special issue (S1) 54: 213219.CrossRefGoogle ScholarPubMed
Peiris, JS, de Jong, MD and Guan, Y (2007). Avian influenza virus (H5N1): a threat to human health. Clinical Microbiology Reviews 20: 243267.CrossRefGoogle ScholarPubMed
Peiris, M, Yuen, KY, Leung, CW, Chan, KH, Ip, PL, Lai, RW, Orr, WK and Shortridge, KF (1999). Human infection with influenza H9N2. Lancet 354: 916917.CrossRefGoogle ScholarPubMed
Perdue, ML, Latimer, JW and Crawford, JM (1995). A novel carbohydrate addition site on the hemagglutinin protein of a highly pathogenic H7 subtype avian influenza virus. Virology 213: 276281.CrossRefGoogle ScholarPubMed
Perez, DR, Lim, W, Seiler, JP, Yi, G, Peiris, M, Shortridge, KF and Webster, RG (2003). Role of quail in the interspecies transmission of H9 influenza A viruses: molecular changes on HA that correspond to adaptation from ducks to chickens. Journal of Virology 77: 31483156.CrossRefGoogle ScholarPubMed
Pillai, SP, Suarez, DL, Pantin-Jackwood, M and Lee, CW (2009). The high susceptability of turkeys to low pathogenic avian influenza viruses of different origins imply their importance as intermediate host. In: 7th International Symposium on Avian Influenza: Avian Influenza in Poultry and Wild Birds.Google Scholar
Qi, X, Li, X, Rider, P, Fan, W, Gu, H, Xu, L, Yang, Y, Lu, S, Wang, H and Liu, F (2009). Molecular characterization of highly pathogenic H5N1 avian influenza A viruses isolated from raccoon dogs in China. PLoS ONE 4: e4682.CrossRefGoogle ScholarPubMed
Reid, AH, Taubenberger, JK and Fanning, TG (2001). The 1918 Spanish influenza: integrating history and biology. Microbes and Infection 3: 8187.CrossRefGoogle ScholarPubMed
Robinson, JL, Lee, BE, Patel, J, Bastien, N, Grimsrud, K, Seal, RF, King, R, Marshall, F and Li, Y (2007). Swine influenza (H3N2) infection in a child and possible community transmission, Canada. Emerging Infectious Diseases 13: 18651870.CrossRefGoogle Scholar
Russell, CA, Jones, TC, Barr, IG, Cox, NJ, Garten, RJ, Gregory, V, Gust, ID, Hampson, AW, Hay, AJ, Hurt, AC, de Jong, JC, Kelso, A, Klimov, AI, Kageyama, T, Komadina, N, Lapedes, AS, Lin, YP, Mosterin, A, Obuchi, M, Odagiri, T, Osterhaus, AD, Rimmelzwaan, GF, Shaw, MW, Skepner, E, Stohr, K, Tashiro, M, Fouchier, RA and Smith, DJ (2008). The global circulation of seasonal influenza A (H3N2) viruses. Science 320: 340346.CrossRefGoogle ScholarPubMed
Sagripanti, JL and Lytle, CD (2007). Inactivation of influenza virus by solar radiation. Photochemistry and Photobiology 83: 12781282.CrossRefGoogle ScholarPubMed
Saito, T and Kawano, K (1997). Loss of glycosylation at Asn144 alters the substrate preference of the N8 influenza A virus neuraminidase. Journal of Veterinary Medical Science 59: 923926.CrossRefGoogle ScholarPubMed
Schnirring, L (2008). CDC reports swine flu virus in Texas patient. Influenza. Center for Infectious Disease Research & Policy (CIDRAP), Minneapolis, MN. Available online at: http://www.cidrap.umn.edu/cidrap/content/influenza/Google Scholar
Senne, DA, Panigrahy, B, Kawaoka, Y, Pearson, JE, Suss, J, Lipkind, M, Kida, H and Webster, RG (1996). Survey of the hemagglutinin (HA) cleavage site sequence of H5 and H7 avian influenza viruses: amino acid sequence at the HA cleavage site as a marker of pathogenicity potential. Avian Diseases 40: 425437.CrossRefGoogle Scholar
Seo, SH, Hoffmann, E and Webster, RG (2002). Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nature Medicine 8: 950954.CrossRefGoogle ScholarPubMed
Shaman, J and Kohn, M (2009). Absolute humidity modulates influenza survival, transmission, and seasonality. Proceedings of the National Academy of Sciences, USA 106: 32433248.CrossRefGoogle ScholarPubMed
Sharp, GB, Kawaoka, Y, Wright, SM, Turner, B, Hinshaw, V and Webster, RG (1993). Wild ducks are the reservoir for only a limited number of influenza A subtypes. Epidemiology and Infection 110: 161176.CrossRefGoogle Scholar
Shi, WF, Gibbs, MJ, Zhang, YZ, Zhang, Z, Zhao, XM, Jin, X, Zhu, CD, Yang, MF, Yang, NN, Cui, YJ and Ji, L (2008). Genetic analysis of four porcine avian influenza viruses isolated from Shandong, China. Archives of Virology 153: 211217.CrossRefGoogle ScholarPubMed
Shinya, K, Hatta, M, Yamada, S, Takada, A, Watanabe, S, Halfmann, P, Horimoto, T, Neumann, G, Kim, JH, Lim, W, Guan, Y, Peiris, M, Kiso, M, Suzuki, T, Suzuki, Y and Kawaoka, Y (2005). Characterization of a human H5N1 influenza A virus isolated in 2003. Journal of Virology 79: 99269932.CrossRefGoogle ScholarPubMed
Shinya, K, Watanabe, S, Ito, T, Kasai, N and Kawaoka, Y (2007). Adaptation of an H7N7 equine influenza A virus in mice. Journal of General Virology 88: 547553.CrossRefGoogle ScholarPubMed
Sims, LD and Brown, IH (2008). Avian influenza: Multicontinental Epidemic of H5N1 HPAI Virus (1996–2007), Ames, IA: Blackwell.Google Scholar
Sivanandan, V, Halvorson, DA, Laudert, E, Senne, DA and Kumar, MC (1991). Isolation of H13N2 influenza A virus from turkeys and surface water. Avian Diseases 35: 974977.CrossRefGoogle ScholarPubMed
Skehel, JJ, Bayley, PM, Brown, EB, Martin, SR, Waterfield, MD, White, JM, Wilson, IA and Wiley, DC (1982). Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. Proceedings of the National Academy of Sciences, USA 79: 968972.CrossRefGoogle Scholar
Song, D, Kang, B, Lee, C, Jung, K, Ha, G, Kang, D, Park, S, Park, B and Oh, J (2008). Transmission of avian influenza virus (H3N2) to dogs. Emerging Infectious Diseases 14: 741746.CrossRefGoogle ScholarPubMed
Song, MS, Pascua, PN, Lee, JH, Baek, YH, Lee, OJ, Kim, CJ, Kim, H, Webby, RJ, Webster, RG and Choi, YK (2009). The polymerase acidic protein gene of influenza a virus contributes to pathogenicity in a mouse model. Journal of Virology 83: 1232512335.CrossRefGoogle ScholarPubMed
Sorrell, EM and Perez, DR (2007). Adaptation of influenza A/Mallard/Potsdam/178-4/83 H2N2 virus in Japanese quail leads to infection and transmission in chickens. Avian Diseases 51: 264268.CrossRefGoogle ScholarPubMed
Sorrell, EM, Wan, H, Araya, Y, Song, H and Perez, DR (2009). Transmission of H9N2 influenza A viruses in ferret model. 7th International Symposium on Avian Influenza: Avian Influenza in Poultry and Wild Birds, Athens, Georgia, USA.Google Scholar
Sponseller, BA, Strait, E, Jergens, A, Trujillo, J, Harmon, K, Koster, L, Jenkins-Moore, M, Killian, M, Swenson, S, Bender, H, Waller, K, Miles, K, Pearce, T, Yoon, K-J and Nara, P (2010). Influenza A pandemic (H1N1) 2009 virus infection in domestic cat. Emerging Infectious Diseases 16: 534537.CrossRefGoogle ScholarPubMed
Srivastava, B, Blazejewska, P, Hessmann, M, Bruder, D, Geffers, R, Mauel, S, Gruber, AD and Schughart, K (2009). Host genetic background strongly influences the response to influenza a virus infections. PLoS ONE 4: e4857.CrossRefGoogle ScholarPubMed
Stallknecht, DE and Shane, SM (1988). Host range of avian influenza virus in free-living birds. Veterinary Research Communications 12: 125141.CrossRefGoogle ScholarPubMed
Stallknecht, DE, Shane, SM, Kearney, MT and Zwank, PJ (1990). Persistence of avian influenza viruses in water. Avian Diseases 34: 406411.CrossRefGoogle ScholarPubMed
Steel, J, Lowen, AC, Mubareka, S and Palese, P (2009). Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N. PLoS Pathogens 5: e1000252.CrossRefGoogle ScholarPubMed
Steensels, M, Van Borm, S, Boschmans, M and van den Berg, T (2007). Lethality and molecular characterization of an HPAI H5N1 virus isolated from eagles smuggled from Thailand into Europe. Avian Diseases 51: 401407.CrossRefGoogle ScholarPubMed
Stevens, J, Blixt, O, Tumpey, TM, Taubenberger, JK, Paulson, JC and Wilson, IA (2006). Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312: 404410.CrossRefGoogle ScholarPubMed
Stieneke-Grober, A, Vey, M, Angliker, H, Shaw, E, Thomas, G, Roberts, C, Klenk, HD and Garten, W (1992). Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO Journal 11: 24072414.CrossRefGoogle Scholar
Suarez, DL (2000). Evolution of avian influenza viruses. Veterinary Microbiology 74: 1527.CrossRefGoogle ScholarPubMed
Suarez, DL, Garcia, M, Latimer, J, Senne, D and Perdue, M (1999). Phylogenetic analysis of H7 avian influenza viruses isolated from the live bird markets of the Northeast United States. Journal of Virology 73: 35673573.CrossRefGoogle ScholarPubMed
Suarez, DL and Schultz-Cherry, S (2000). Immunology of avian influenza virus: a review. Developmental and Comparative Immunology 24: 269283.CrossRefGoogle ScholarPubMed
Subbarao, EK, London, W and Murphy, BR (1993). A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. Journal of Virology 67: 17611764.CrossRefGoogle ScholarPubMed
Subbaroa, K, Swayne, D and Olsen, CW (2006). Influenza Virology, Current Topics: Epidemiology and Control of Human and Animal Influenza. Norfolk, England: Caister Academic Press.Google Scholar
Suzuki, Y, Ito, T, Suzuki, T, JrHolland, RE, Chambers, TM, Kiso, M, Ishida, H and Kawaoka, Y (2000). Sialic acid species as a determinant of the host range of influenza A viruses. Journal of Virology 74: 1182511831.CrossRefGoogle ScholarPubMed
Swayne, DE (2008). The Global Nature of Avian Influenza. Ames, IA: Blackwell.CrossRefGoogle Scholar
Swayne, DE and Halverson, DA (2007). Diseases of Poultry: Influenza. 12th edn.Ames, IA: Blackwell Publishing Professional.Google ScholarPubMed
Swayne, DE, Pantin-Jackwood, M, Kapczynski, D, Spackman, E and Suarez, DL (2009). Susceptibility of poultry to pandemic (H1N1) 2009 Virus. Emerging Infectious Diseases 15: 20612063.CrossRefGoogle ScholarPubMed
Tarendeau, F, Boudet, J, Guilligay, D, Mas, PJ, Bougault, CM, Boulo, S, Baudin, F, Ruigrok, RW, Daigle, N, Ellenberg, J, Cusack, S, Simorre, JP and Hart, DJ (2007). Structure and nuclear import function of the C-terminal domain of influenza virus polymerase PB2 subunit. Nature Structural and Molecular Biology 14: 229233.CrossRefGoogle ScholarPubMed
Tarendeau, F, Crepin, T, Guilligay, D, Ruigrok, RW, Cusack, S and Hart, DJ (2008). Host determinant residue lysine 627 lies on the surface of a discrete, folded domain of influenza virus polymerase PB2 subunit. PLoS Pathogens 4: e1000136.CrossRefGoogle ScholarPubMed
Taubenberger, JK and Morens, DM (2006). 1918 Influenza: the mother of all pandemics. Emerging Infectious Diseases 12: 1522.CrossRefGoogle ScholarPubMed
Taubenberger, JK and Palese, P (2006). Influenza Virus, Current Topics: The Origin and Virulence of 1918 “Spanish” Influenza Virus. Norfolk, England: Caister Academic Press.Google Scholar
Taubenberger, JK, Reid, AH, Lourens, RM, Wang, R, Jin, G and Fanning, TG (2005). Characterization of the 1918 influenza virus polymerase genes. Nature 437: 889893.CrossRefGoogle ScholarPubMed
Tellier, R (2006). Review of aerosol transmission of influenza A virus. Emerging Infectious Diseases 12: 16571662.CrossRefGoogle ScholarPubMed
Thanawongnuwech, R, Amonsin, A, Tantilertcharoen, R, Damrongwatanapokin, S, Theamboonlers, A, Payungporn, S, Nanthapornphiphat, K, Ratanamungklanon, S, Tunak, E, Songserm, T, Vivatthanavanich, V, Lekdumrongsak, T, Kesdangsakonwut, S, Tunhikorn, S and Poovorawan, Y (2005). Probable tiger-to-tiger transmission of avian influenza H5N1. Emerging Infectious Diseases 11: 699701.CrossRefGoogle ScholarPubMed
Thomas, Y, Vogel, G, Wunderli, W, Suter, P, Witschi, M, Koch, D, Tapparel, C and Kaiser, L (2008). Survival of Influenza Virus on Banknotes. Applied and Environmental Microbiology 10: 30023007.CrossRefGoogle Scholar
Thompson, WW, Shay, DK, Weintraub, E, Brammer, L, Bridges, CB, Cox, NJ and Fukuda, K (2004). Influenza-associated hospitalizations in the United States. Journal of the American Medical Association 292: 13331340.CrossRefGoogle ScholarPubMed
Thompson, WW, Shay, DK, Weintraub, E, Brammer, L, Cox, N, Anderson, LJ and Fukuda, K (2003). Mortality associated with influenza and respiratory syncytial virus in the United States. Journal of the American Medical Association 289: 179186.CrossRefGoogle ScholarPubMed
Timoney, PJ (1996). Equine influenza. Comparative Immunology, Microbiology and Infectious Diseases 19: 205211.CrossRefGoogle ScholarPubMed
Tweed, SA, Skowronski, DM, David, ST, Larder, A, Petric, M, Lees, W, Li, Y, Katz, J, Krajden, M, Tellier, R, Halpert, C, Hirst, M, Astell, C, Lawrence, D and Mak, A (2004). Human illness from avian influenza H7N3, British Columbia. Emerging Infectious Diseases 10: 21962199.CrossRefGoogle ScholarPubMed
Van Hoeven, N, Pappas, C, Belser, JA, Maines, TR, Zeng, H, Garcia-Sastre, A, Sasisekharan, R, Katz, JM and Tumpey, TM (2009). Human HA and polymerase subunit PB2 proteins confer transmission of an avian influenza virus through the air. Proceedings of the National Academy of Sciences, USA 106: 33663371.CrossRefGoogle ScholarPubMed
Vey, M, Orlich, M, Adler, S, Klenk, HD, Rott, R and Garten, W (1992). Hemagglutinin activation of pathogenic avian influenza viruses of serotype H7 requires the protease recognition motif R-X-K/R-R. Virology 188: 408413.CrossRefGoogle ScholarPubMed
Vincent, AL, Lager, KM, Ma, W, Lekcharoensuk, P, Gramer, MR, Loiacono, C and Richt, JA (2006). Evaluation of hemagglutinin subtype 1 swine influenza viruses from the United States. Veterinary Microbiology 118: 212222.CrossRefGoogle ScholarPubMed
Vines, A, Wells, K, Matrosovich, M, Castrucci, MR, Ito, T and Kawaoka, Y (1998). The role of influenza A virus hemagglutinin residues 226 and 228 in receptor specificity and host range restriction. Journal of Virology 72: 76267631.CrossRefGoogle ScholarPubMed
Walther, BA and Ewald, PW (2004). Pathogen survival in the external environment and the evolution of virulence. Biological Reviews of the Cambridge Philosophical Society 79: 849869.CrossRefGoogle ScholarPubMed
Wan, H and Perez, DR (2006). Quail carry sialic acid receptors compatible with binding of avian and human influenza viruses. Virology 346: 278286.CrossRefGoogle ScholarPubMed
Wan, H and Perez, DR (2007). Amino acid 226 in the hemagglutinin of H9N2 influenza viruses determines cell tropism and replication in human airway epithelial cells. Journal of Virology 81: 51815191.CrossRefGoogle ScholarPubMed
Webby, RJ, Swenson, SL, Krauss, SL, Gerrish, PJ, Goyal, SM and Webster, RG (2000). Evolution of swine H3N2 influenza viruses in the United States. Journal of Virology 74: 82438251.CrossRefGoogle ScholarPubMed
Weber, TP and Stilianakis, NI (2008a). Inactivation of influenza A viruses in the environment and modes of transmission: a critical review. Journal of Infection 57: 361373.CrossRefGoogle ScholarPubMed
Weber, TP and Stilianakis, NI (2008b). Inactivation of influenza A viruses in the environment and modes of transmission: a critical review. Journal of Infection 57: 361373.CrossRefGoogle ScholarPubMed
Weber, TP and Stilianakis, NI (2008c). A note on the inactivation of influenza A viruses by solar radiation, relative humidity and temperature. Photochemistry and Photobiology 84: 16011602; author reply 1603–1604.CrossRefGoogle ScholarPubMed
Webster, RG, Guan, Y, Peiris, M, Walker, D, Krauss, S, Zhou, NN, Govorkova, EA, Ellis, TM, Dyrting, KC, Sit, T, Perez, DR and Shortridge, KF (2002). Characterization of H5N1 influenza viruses that continue to circulate in geese in southeastern China. Journal of Virology 76: 118126.CrossRefGoogle ScholarPubMed
WHO (2009a). Cumulative number of confirmed human cases of avian influenza A/(H5N1) reported to WHO. In: Avian Influenza. WHO. [Available online at http://www.who.int/csr/disease/avian_influenza/country/cases_table_2009_2004_2008/en/index.html].Google Scholar
WHO (2009b). World now at the start of 2009 influenza pandemic. [Available online at http://www.who.int/mediacentre/news/statements/2009/h1n1_pandemic_phase6_20090611/en/index.html].Google Scholar
WHO (2010a). Pandemic (H1N1) 2009 – update 83. In: Pandemic H1N1 Influenza. [Available online at http://www.who.int/csr/don/2010_01_15/en/index.html].Google Scholar
WHO (2010b). Pandemic (H1N1) 2009 – Weekly virological surveillance update. [Available online at http://www.who.int/csr/disease/swineflu/laboratory15_01_2010/en/index.html].Google Scholar
Wright, PF, Neumann, G and Kawaoka, Y (2007). Fields Virology: Orthomyxoviruses. 5th edn.Philadelphia, PA: Lippincott Williams & Wilkins.Google Scholar
Yamada, S, Suzuki, Y, Suzuki, T, Le, MQ, Nidom, CA, Sakai-Tagawa, Y, Muramoto, Y, Ito, M, Kiso, M, Horimoto, T, Shinya, K, Sawada, T, Kiso, M, Usui, T, Murata, T, Lin, Y, Hay, A, Haire, LF, Stevens, DJ, Russell, RJ, Gamblin, SJ, Skehel, JJ and Kawaoka, Y (2006). Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature 444: 378382.CrossRefGoogle ScholarPubMed
Yassine, HM, Al-Natour, MQ, Lee, CW and Saif, YM (2007). Interspecies and intraspecies transmission of triple reassortant H3N2 influenza A viruses. Virology Journal 4: 129.CrossRefGoogle ScholarPubMed
Yassine, HM, Lee, CW, Suarez, DL and Saif, YM (2008). Genetic and antigenic relatedness of H3 subtype influenza A viruses isolated from avian and mammalian species. Vaccine 26: 966977.CrossRefGoogle ScholarPubMed
Yu, H, Hua, RH, Wei, TC, Zhou, YJ, Tian, ZJ, Li, GX, Liu, TQ and Tong, GZ (2008). Isolation and genetic characterization of avian origin H9N2 influenza viruses from pigs in China. Veterinary Microbiology 1–2: 8292.CrossRefGoogle Scholar
Zhang, G, Shoham, D, Gilichinsky, D, Davydov, S, Castello, JD and Rogers, SO (2006). Evidence of influenza a virus RNA in siberian lake ice. Journal of Virology 80: 1222912235.CrossRefGoogle ScholarPubMed
Zhu, Q, Yang, H, Chen, W, Cao, W, Zhong, G, Jiao, P, Deng, G, Yu, K, Yang, C, Bu, Z, Kawaoka, Y and Chen, H (2008). A naturally occurring deletion in its NS gene contributes to the attenuation of an H5N1 swine influenza virus in chickens. Journal of Virology 82: 220228.CrossRefGoogle Scholar