Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T20:45:57.988Z Has data issue: false hasContentIssue false

Escherichia coli O157:H7 in beef cattle: on farm contamination and pre-slaughter control methods

Published online by Cambridge University Press:  09 December 2011

J. M. Soon*
Affiliation:
School of Agriculture, Royal Agricultural College, Cirencester, GL7 6JS, UK Department of Agro Industry, Faculty of Agro Industry and Natural Resources, Universiti Malaysia Kelantan, Pengkalan Chepa, 16100 Kelantan, Malaysia
S. A. Chadd
Affiliation:
School of Agriculture, Royal Agricultural College, Cirencester, GL7 6JS, UK
R. N. Baines
Affiliation:
School of Agriculture, Royal Agricultural College, Cirencester, GL7 6JS, UK
*
*Corresponding author. E-mail: [email protected]; [email protected]

Abstract

This paper addresses food safety in beef cattle production, with particular emphasis on factors that affect the prevalence of Escherichia coli O157:H7 in beef cattle and on control methods that have been investigated. Product recalls and foodborne diseases due to this organism continue to occur even though control measures have been under investigation for over 20 years. Most meatborne outbreaks are due to improper food handling practices and consumption of undercooked meat. However, the majority of pathogenic bacteria that can spread at slaughter by cross-contamination can be traced back to the farm rather than originating from the slaughter plant. This would ideally require the adoption of rigorous on-farm intervention strategies to mitigate risks at the farm level. On-farm strategies to control and reduce E. coli O157:H7 at the farm level will reduce the risk of carcass contamination at slaughter and processing facilities although they will not eliminate E. coli O157:H7. The most successful strategy for reducing the risk of contamination of beef and beef products will involve the implementation of both pre- and post-harvest measures.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, K and Brülisauer, F (2010). The application of food safety interventions in primary production of beef and lamb: a review. International Journal of Food Microbiology 141: S43S52.CrossRefGoogle ScholarPubMed
Ahmad, A, Nagaraja, TG and Zurek, L (2007). Transmission of Escherichia coli O157:H7 to cattle by house flies. Preventive Veterinary Medicine 80: 7481.CrossRefGoogle ScholarPubMed
Alam, MJ and Zurek, L (2004). Association of Escherichia coli O157:H7 with houseflies on a cattle farm. Applied and Environmental Microbiology 70: 75787580.CrossRefGoogle ScholarPubMed
Arthur, TM, Brichta-Harhay, DM, Bosilevac, JM, Kalchayanand, N, Shackelford, SD, Wheeler, TL and Koohmaraie, M (2010). Super shedding of Escherichia coli O157:H7 by cattle and the impact on beef carcass contamination. Meat Science 86: 3237.CrossRefGoogle ScholarPubMed
Arthur, TM, Keen, JE, Bosilevac, JM, Brichta-Harhay, DM, Kalchayanand, N, Shackelford, SD, Wheeler, TL, Nou, X and Koohmaraie, M (2009). Longitudinal study of Escherichia coli O157:H7 in a beef cattle feedlot and role of high-level shedders in hide contamination. Applied and Environmental Microbiology 75: 65156523.CrossRefGoogle Scholar
Autio, T, Säteri, T, Fredriksson-Ahomaa, M, Rahkio, M, Lundén, J and Korkeala, H (2000). Listeria monocytogenes contamination pattern in pig slaughter houses. Journal of Food Protection 63: 14381442.CrossRefGoogle Scholar
Bach, SJ, McAllister, TA, Veira, DM, Gannon, VPJ and Holley, RA (2002). Transmission and control of Escherichia coli O157:H7 – a review. Canadian Journal of Animal Science 82: 475490.CrossRefGoogle Scholar
Bach, SJ, Selinger, LJ, Stanford, K and McAllister, TA (2005). Effect of supplementing corn- or barley-based feedlot diets with canola oil on faecal shedding of Escherichia coli O157:H7 by steers. Journal of Applied Microbiology 98: 464475.CrossRefGoogle ScholarPubMed
Barker, ZE, Amory, JR, Wright, JL, Blowey, RW and Green, LE (2007). Management factors associated with impaired locomotion in dairy cows in England and Wales. Journal of Dairy Science 90: 32703277.CrossRefGoogle ScholarPubMed
Berard, NC, Holley, RA, McAllister, TA, Ominski, KH, Wittenberg, KM, Bouchard, KS, Bouchard, JJ and Krause, DO (2009). Potential to reduce Escherichia coli shedding in cattle feces by using sainfoin (Onobrychis viciifolia) forage, tested in vitro and in vivo. Applied and Environmental Microbiology 75: 10741079.CrossRefGoogle ScholarPubMed
Berg, J, McAllister, T, Bach, S, Stilborn, R, Hancock, D and LeJeune, J (2004). Escherichia coli O157:H7 excretion by commercial feedlot cattle fed either barley- or corn-based finishing diets. Journal of Food Protection 67: 666671.CrossRefGoogle ScholarPubMed
Berry, ED and Wells, JE (2010). Escherichia coli O157:H7: recent advances in research on occurrence, transmission, and control in cattle and the production environment. Advances in Food and Nutrition Research 60: 67117.CrossRefGoogle Scholar
Berry, ED, Wells, JE, Arthur, TM, Woodbury, BL, Nienaber, JA, Brown-Brandl, TM and Eigenberg, RA (2010). Soil versus pond ash surfacing of feedlot pens: Occurrence of Escherichia coli O157:H7 in cattle and persistence in manure. Journal of Food Protection 73: 12691277.CrossRefGoogle ScholarPubMed
Bettelheim, KA (2007). The non-O157 Shiga-toxigenic (verocytotoxigenic) Escherichia coli; under rated pathogens. Critical Reviews in Microbiology 33: 6787.CrossRefGoogle ScholarPubMed
Brashears, MM, Galyean, ML, Loneragan, GH, Mann, JE and Killinger-Mann, K (2003a). Prevalence of Escherichia coli O157:H7 and performance by beef feedlot cattle given Lactobacillus direct-fed microbials. Journal of Food Protection 66: 748754.CrossRefGoogle ScholarPubMed
Brashears, MM, Jaroni, D and Trimble, J (2003b). Isolation, selection, and characterization of lactic acid bacteria for a competitive exclusion product to reduce shedding of Escherichia coli O157:H7 in cattle. Journal of Food Protection 66: 355363.CrossRefGoogle ScholarPubMed
Buchko, SJ, Holley, RA, Olson, WO, Gannon, VPJ and Veira, DM (2000). The effect of different grain diets on fecal shedding of Escherichia coli O157:H7 by steers. Journal of Food Protection 63: 14671474.CrossRefGoogle ScholarPubMed
Burt, S (2004). Essential oils: their antibacterial properties and potential applications in foods – a review. International Journal of Food Microbiology 94: 223253.CrossRefGoogle ScholarPubMed
Callaway, TR, Anderson, RC, Edrington, TS, Elder, RO, Genovese, KJ, Bischoff, KM, Poole, TL, Jung, YS, Harvey, RB and Nisbet, DJ (2003). Preslaughter intervention strategies to reduce food-borne pathogens in food animals. Journal of Animal Science 81: E17E23.Google Scholar
Callaway, TR, Carr, MA, Edrington, TS, Anderson, RC and Nisbet, DJ (2009). Diet, Escherichia coli O157:H7, and cattle: a review after 10 years. Current Issues in Molecular Biology 11: 6780.Google ScholarPubMed
Callaway, TR, Carroll, JA, Arthington, JD, Pratt, C, Edrington, TS, Anderson, RC, Galyean, ML, Ricke, SC, Crandall, P and Nisbet, DJ (2008a). Citrus products decrease growth of E. coli O157:H7 and Salmonella typhimurium in pure culture and in fermentation with mixed ruminal microorganisms in vitro . Foodborne Pathogens and Disease 5: 621627.CrossRefGoogle ScholarPubMed
Callaway, TR, Edrington, TS, Anderson, RC, Harvey, RB, Genovese, KJ, Kennedy, CN, Venn, DW and Nisbet, DJ (2008b). Probiotics, prebiotics and competitive exclusion for prophylaxis against bacterial disease. Animal Health Research Reviews 9: 217225.CrossRefGoogle ScholarPubMed
Callaway, TR, Edrington, TS, Brabban, AD, Anderson, RC, Rossman, ML, Engler, MJ, Carr, MA, Genovese, KJ, Keen, JE, Looper, ML, Kutter, EM and Nisbet, DJ (2008c). Bacteriophage isolated from feedlot cattle can reduce Escherichia coli O157:H7 populations in ruminant gastrointestinal tracts. Foodborne Pathogens and Disease 5: 183191.CrossRefGoogle ScholarPubMed
Cani, PD, Neyrinck, AM, Maton, N and Delzenne, NM (2005). Oligofructose promotes satiety in rats fed a high-fat diet: involvement of glucagon-like peptide-1. Obesity Research 13: 10001007.CrossRefGoogle ScholarPubMed
CDC (2008). Outbreak of Salmonella serotype Saintpaul infections associated with multiple raw produce items – United States, 2008. MMWR Morbidity Mortality Weekly Report 57: 929934.Google Scholar
CDC (2009). Multistate outbreak of Salmonella infections associated with peanut butter and peanut butter – containing products – United States, 2008–2009. MMWR Morbidity Mortality Weekly Report 58: 8590.Google Scholar
CDC (2011). Questions and answers about the FoodNet MMWR with data from 2010. http://www.cdc.gov/foodnet/PDFs/FoodNetMMWRQandA2010.pdfGoogle Scholar
Chase-Topping, ME, Gally, D, Low, C, Matthews, L and Woolhouse, M (2008). Super-shedding and the link between human infection and livestock carriage of Escherichia coli O157. Nature Reviews Microbiology 6: 904912.CrossRefGoogle ScholarPubMed
Chase-Topping, ME, McKendrick, IJ, Pearce, MC, MacDonald, P, Matthews, L, Halliday, J, Allison, L, Fenlon, D, Low, JC, Gunn, G, and Woolhouse, MEJ (2007). Risk factors for the presence of high-level shedders of Escherichia coli O157 on Scottish farms. Journal of Clinical Microbiology 45: 15941603.CrossRefGoogle ScholarPubMed
Cizek, A, Alexa, P, Literak, I, Hamrik, J, Novak, P and Smola, J (1999). Shiga toxin-producing Escherichia coli O157 in feedlot cattle and Norwegian rats from a large-scale farm. Letters in Applied Microbiology 28: 435439.CrossRefGoogle ScholarPubMed
Cobbold, R and Desmarchelier, P (2002). Horizontal transmission of shiga toxin-producing Escherichia coli within groups of dairy calves. Applied and Environmental Microbiology 68: 41484152.CrossRefGoogle ScholarPubMed
Cobbold, R, Hancock, DD, Rice, DH, Berg, J, Stilborn, R, Hovde, CJ and Besser, TE (2007). Rectoanal junction colonization of feedlot cattle by Escherichia coli O157:H7 and its association with supershedders and excretion dynamics. Applied and Environmental Microbiology 73: 15631568.CrossRefGoogle ScholarPubMed
Collins, JD and Wall, PG (2004). Food safety and animal production systems: controlling zoonoses at farm level. Science and Technical Review 23: 685700.CrossRefGoogle ScholarPubMed
Crump, JA, Griffin, PM and Angulo, FJ (2002). Bacterial contamination of animal feed and its relationship to human foodborne illness. Clinical Infectious Diseases 35: 859865.CrossRefGoogle ScholarPubMed
Cummings, JH, MacFarlane, GT and Englyst, HN (2001). Prebiotic digestion and fermentation. American Journal of Clinical Nutrition 73: 415420.CrossRefGoogle ScholarPubMed
Daniels, MJ, Hutchings, MR and Greig, A (2003). The risk of disease transmission to livestock posed by contamination of farm stored feed by wildlife excreta. Epidemiology and Infection 130: 561568.CrossRefGoogle ScholarPubMed
Davies, RH (2005). Pathogen populations on poultry farms. In: Mead, CC (ed.) Food Safety Control in the Poultry Industry. Cambridge: Woodhead Publishing Limited, pp. 101151.CrossRefGoogle Scholar
Davis, MA, Hancock, DD, Rice, DH, Call, DR, DiGiacomo, R, Samadpour, M and Besser, TE (2003). Feedstuffs as a vehicle of cattle exposure to Escherichia coli O157:H7 and Salmonella enterica. Veterinary Microbiology 95: 199210.CrossRefGoogle ScholarPubMed
Depenbusch, BE, Nagaraja, TG, Sargeant, JM, Drouillard, JS, Loe, ER and Corrigan, ME (2008). Influence of processed grains on fecal pH, starch concentration, and shedding of Escherichia coli O157 in feedlot cattle. Journal of Animal Science 86: 632639.CrossRefGoogle ScholarPubMed
Dini, C and De Urraza, PJ (2010). Isolation and selection of coliphages as potential biocontrol agents of enterhemorrhagic and Shiga toxin-producing E. coli (EHEC and STEC) in cattle. Journal of Applied Microbiology 109: 873887.CrossRefGoogle Scholar
Diez-Gonzalez, F, Callaway, TR, Kizouliz, MG and Russell, JB (1998). Grain feeding and the dissemination of acid-resistant Escherichia coli from cattle. Science 281: 16661668.CrossRefGoogle ScholarPubMed
Dodd, CC, Sanderson, MW, Sargeant, JM, Nagaraja, TG, Oberst, RD, Smith, RA and Griffin, DD (2003). Prevalence of Escherichia coli O157 in cattle feeds in Midwestern feedlots. Applied and Environmental Microbiology 69: 52435247.CrossRefGoogle ScholarPubMed
Doyle, MP and Erickson, MC (2011). Opportunities for mitigating pathogen contamination during on-farm food production. International Journal of Food Microbiology, doi: 10.1016/j.ijfoodmicro.2011.02.037.Google ScholarPubMed
Elder, RO, Keen, JE, Siragusa, GR, Barkocy-Gallagher, GA, Mohammad, Koohmaraie and Laegreid, WW (2000). Correlation of enterohemorrhagic Escherichia coli O157 prevalence in feces, hides, and carcasses of beef cattle during processing. Proceedings of the National Academy of Sciences of the United States of America 97: 29993003.CrossRefGoogle ScholarPubMed
Ellis-Iversen, J, Cook, AJ, Smith, RP, Pritchard, GC and Nielen, M (2009). Temporal patterns and risk factors for Escherichia coli O157 and Campylobacter spp. in young cattle. Journal of Food Protection 72: 490496.CrossRefGoogle ScholarPubMed
Ellis-Iversen, J, Cook, AJC, Watson, E, Nielen, M, Larkin, L, Wooldridge, M and Hogeveen, H (2010). Perceptions, circumstances and motivators that influence implementation of zoonotic control programs on cattle farms. Preventive Veterinary Medicine 93: 276285.CrossRefGoogle ScholarPubMed
Ellis-Iversen, J, Smith, RP, Snow, LC, Watson, E, Millar, MF, Pritchard, GC, Sayers, AR and Cook, AJC (2007). Identification of management risk factors for VTEC O157 in young-stock in England and Wales. Preventive Veterinary Medicine 82: 2941.CrossRefGoogle ScholarPubMed
Ellis-Iversen, J, Smith, RP, Van Winden, S, Paiba, GA, Watson, E, Snow, LC and Cook, AJC (2008). Farm practices to control E. coli O157 in young cattle: a randomized controlled trial. Veterinary Research 39: 112.CrossRefGoogle Scholar
Espina, L, Somolinos, M, Lorán, S, Conchello, P, Garcìa, D and Pagán, R (2011). Chemical composition of commercial citrus fruit essential oils and evaluation of their antimicrobial activity acting alone or in combined processes. Food Control 22: 896902.CrossRefGoogle Scholar
Fenlon, DR and Wilson, J (2000). Growth of Escherichia coli O157 in poorly fermented laboratory silage: a possible environmental dimension in the epidemiology of E. coli O157 . Letters in Applied Microbiology 30: 118121.CrossRefGoogle ScholarPubMed
Fischer, JR, Zhao, T, Doyle, M, Goldberg, MR, Brown, CA, Sewell, CT, Kavanaugh, DM and Bauman, CD (2001). Experimental and field studies of Escherichia coli O157:H7 in white-tailed deer. Applied and Environmental Microbiology 67: 12181224.CrossRefGoogle ScholarPubMed
Fox, JT, Depenbusch, BE, Drouillard, JS and Nagaraja, TG (2007). Dry-rolled or steam-flaked grain-based diets and fecal shedding of Escherichia coli O157 in feedlot cattle. Journal of Animal Science 85: 12071212.CrossRefGoogle ScholarPubMed
Fox, JT, Thomson, DU, Drouillard, JS, Thornton, AB, Burkhardt, DT, Emery, DA and Nagaraja, TG (2009). Efficacy of Escherichia coli O157:H7 siderophore receptor/porin proteins-based vaccine in feedlot cattle naturally shedding E. coli O157. Foodborne Pathogens and Disease 6: 893899.CrossRefGoogle ScholarPubMed
FSA (2007). Clean beef cattle for slaughter. A guide for producers.Food Standards Agency. http://www.food.gov.uk/multimedia/pdfs/publication/cleanbeefsaf1007.pdfGoogle Scholar
Fujiwara, S, Hashiba, H, Hirota, T and Forstner, JF (1997). Proteinaceous factor(s) in culture supernatant fluids of bifidobacteria which prevents the binding of enteroxigenic Escherichia coli to gangliotetraosylceramide. Applied and Environmental Microbiology 63: 506512.CrossRefGoogle Scholar
Gaggìa, F, Mattarelli, P and Biavati, B (2010). Probiotics, and prebiotics in animal feeding for safe food production. International Journal of Food Microbiology 141: S15S28.CrossRefGoogle ScholarPubMed
Gibson, GR and Roberfroid, MB (1995). Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. Journal of Nutrition 125: 14011412.CrossRefGoogle ScholarPubMed
Grauke, LJ, Kudva, IT, Yoon, JW, Hunt, CW, Williams, CJ and Hovde, CJ (2002). Gastrointestinal tract location of Escherichia coli O157:H7 in ruminants. Applied and Environmental Microbiology 68: 22692277.CrossRefGoogle ScholarPubMed
Greer, GG (2005). Bacteriophage control of foodborne bacteria. Journal of Food Protection 68: 11021111.CrossRefGoogle Scholar
Greig, JD and Ravel, A (2009). Analysis of foodborne outbreak data reported internationally for source attribution. International Journal of Food Microbiology 130: 7787.CrossRefGoogle ScholarPubMed
Gyles, CL (2007). Shiga toxin-producing Escherichia coli: an overview. Journal of Animal Science 85: E45E62.CrossRefGoogle ScholarPubMed
Ham, GA, Stock, RA, Klopfenstein, TJ, Larson, EM, Shain, DH and Huffman, RP (1994). Wet corn distillers byproducts compared with dried corn distillers grains with solubles as a source of protein and energy for ruminants. Journal of Animal Science 72: 32463257.CrossRefGoogle ScholarPubMed
Hancock, D, Besser, T, LeJeune, J, Davis, M and Rice, D (2001). The control of VTEC in the animal reservoir. International Journal of Food Microbiology 66: 7178.CrossRefGoogle ScholarPubMed
Hancock, DD, Besser, TE, Rice, DH, Ebel, ED, Herriott, DE and Carpenter, LV (1998). Multiple sources of Escherichia coli O157 in feedlots and dairy farms in the Northwestern USA. Preventive Veterinary Medicine 35: 1119.CrossRefGoogle ScholarPubMed
Horchner, PM, Brett, D, Gormley, B, Jenson, I and Pointon, AM (2006). HACCP-based approach to the derivation of an on-farm food safety program for the Australian red meat industry. Food Control 17: 497510.CrossRefGoogle Scholar
Hovde, CJ, Austin, PR, Cloud, KA, Williams, CJ and Hunt, CW (1999). Effect of cattle diet on Escherichia coli O157:H7 acid resistance. Applied and Environmental Microbiology 65: 32333235.CrossRefGoogle ScholarPubMed
Huffman, RD (2002). Current and future technologies for the decontamination of carcasses and fresh meat. Meat Science 62: 285293.CrossRefGoogle ScholarPubMed
Humphrey, T, O'Brien, S and Madsen, M (2007). Campylobacters as zoonotic pathogens: a food production perspective. International Journal of Food Microbiology 117: 237257.CrossRefGoogle ScholarPubMed
Huntington, GB (1997). Starch utilization by ruminants: from basics to the bunk. Journal of Animal Science 75: 852867.CrossRefGoogle Scholar
Hutchinson, ML, Walters, LD, Avery, SM, Munro, F and Moore, A (2005). Analyses of livestock production, waste storage, and pathogen levels and prevalences in farm manures. Applied and Environmental Microbiology 71: 12311236.CrossRefGoogle Scholar
Hynes, NA and Wachsmuth, IK (2000). Escherichia coli O157:H7 risk assessment in ground beef: a public health tool. In: Proceedings of the 4th International Symposium on Shiga toxin producing Escherichia coli infections, Kyoto, Japan, p. 46.Google Scholar
Jacob, ME, Fox, JT, Drouillard, JS, Renter, DG and Nagaraja, TG (2008). Effects of dried distillers’ grain on fecal prevalence and growth of Escherichia coli O157 in batch culture fermentations from cattle. Applied and Environmental Microbiology 74: 3843.CrossRefGoogle ScholarPubMed
Joerger, RD (2003). Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages. Poultry Science 82: 640647.CrossRefGoogle ScholarPubMed
Keene, JE and Elder, RO (2002). Isolation of shiga-toxigenic Escherichia coli O157 from hide surfaces and the oral cavity of finished beef feedlot cattle. Journal of the American Veterinary Medical Association 220: 756763.CrossRefGoogle Scholar
Koohmaraie, M, Arthur, TM, Bosilevac, JM, Brichta-Harhay, DM, Kalchayanand, N, Shackelford, SD and Wheeler, TL (2007). Interventions to reduce/eliminate Escherichia coli O157:H7 in ground beef. Meat Science 77: 9096.CrossRefGoogle ScholarPubMed
Koohmaraie, M, Arthur, TM, Bosilevac, JM, Guerini, M, Shackelford, SD and Wheeler, TL (2005). Post-harvest interventions to reduce/eliminate pathogens in beef. Meat Science 71: 7991.CrossRefGoogle ScholarPubMed
Kudva, IT, Jelacic, S, Tarr, PI, Youderian, P and Hovde, CJ (1999). Biocontrol of Escherichia coli O157 with O157-specific bacteriophages. Applied and Environmental Microbiology 65: 37673773.CrossRefGoogle ScholarPubMed
Kymäläinen, H-R, Kuisma, R, Määttä, J and Sjöberg, A-M (2009). Assessment of cleanness of environmental surfaces in cattle barns and piggeries. Agricultural and Food Science 18: 268282.CrossRefGoogle Scholar
Kymäläinen, H-R, Määttä, J, Puumala, M, Kaustell, KO, Mattila, T, Joutsen, B-L, Kuisma, R, Hurme, K-R, Uusi-Rauva, A and Sjöberg, A-M (2008). A laboratory study of the effect of coating on cleanability of concrete flooring for use in piggeries. Biosystems Engineering 99: 8898.CrossRefGoogle Scholar
LeJeune, JT, Besser, TE and Hancock, DD (2001). Cattle water troughs as reservoirs of Escherichia coli O157. Applied and Environmental Microbiology 67: 30533057.CrossRefGoogle ScholarPubMed
LeJeune, JT, Besser, TE, Rice, DH, Berg, JL, Stilborn, RP and Hancock, DD (2004). Longitudinal study of fecal shedding of Escherichia coli O157:H7 in feedlot cattle: predominance and persistence of specific clonal types despite massive cattle population turnover. Applied and Environmental Microbiology 70: 377384.CrossRefGoogle ScholarPubMed
LeJeune, JT, Hancock, D, Wasteson, Y, Skjerve, E and Urdahl, AM (2006). Comparison of E. coli O157 and Shiga toxin-encoding genes (stx) prevalence between Ohio, USA and Norwegian dairy cattle. International Journal of Food Microbiology 109: 1924.CrossRefGoogle ScholarPubMed
LeJeune, JT and Wetzel, AN (2007). Preharvest control of Escherichia coli O157 in cattle. Journal of Animal Science 85: E73E80.CrossRefGoogle ScholarPubMed
Loneragan, GH and Brashears, MM (2005). Pre-harvest interventions to reduce carriage of E. coli O157 by harvest-ready feedlot cattle. Meat Science 71: 7278.CrossRefGoogle ScholarPubMed
Low, JC, McKendrick, IJ, McKechnie, C, Fenlon, D, Naylor, SW, Currie, C, Smith, DGE, Allison, L and Gally, DL (2005). Rectal carriage of enterohemorrhagic Escherichia coli O157 in slaughtered cattle. Applied and Environmental Microbiology 71: 9397.CrossRefGoogle ScholarPubMed
Määttä, J, Hellstedt, M, Kuisma, R, Kymäläinen, H-R, Mahlberg, R and Sjöberg, A-M (2009). Effects of chemical and mechanical wearing on the cleanability and surface properties of traditional and new surface materials in cattle barns – a laboratory study. Biosystems Engineering 103: 464473.CrossRefGoogle Scholar
Matthews, L, Low, JC, Gally, DL, Pearce, MC, Mellor, DJ, Heesterbeek, JAP, Chase-Topping, M, Naylor, SW, Shaw, DJ, Reid, SWJ, Gunn, GJ and Woolhouse, MEJ (2006). Heterogenous shedding of Escherichia coli O157 in cattle and its implications for control. Proceedings of the National Academy of Sciences of the United States of America 103: 547552.CrossRefGoogle ScholarPubMed
McEvoy, JM, Doherty, AM, Finnerty, M, Sheridan, JJ, McGuire, L, Blair, IS, McDowell, DA and Harrington, D (2000). The relationship between hide cleanliness and bacterial numbers on beef carcasses at a commercial abattoir. Letters in Applied Microbiology 30: 390395.CrossRefGoogle Scholar
McWilliam Leitch, EC and Stewart, CS (2002). Escherichia coli O157 and non-O157 isolates are more susceptible to L-lactate than to D-lactate. Applied Environmental Microbiology 68: 46764678.CrossRefGoogle ScholarPubMed
Mead, P, Slutsker, L, Dietz, V, McCaig, L, Breese, J, Shapiro, C, Griffin, P and Tauxe, R (1999). Food-related illness and death in the United States. Emerging Infectious Diseases 5: 607625.CrossRefGoogle ScholarPubMed
Medellin-Peña, MJ and Griffiths, MW (2009). Effect of molecules secreted by Lactobacillus acidophilus strain La-5 on Escherichia coli O157:H7 colonization. Applied and Environmental Microbiology 75: 11651172.CrossRefGoogle ScholarPubMed
Medellin-Peña, MJ, Wang, H, Johnson, R, Anand, S and Griffiths, MW (2007). Probiotics affect virulence-related gene expression in Escherichia coli O157:H7. Applied and Environmental Microbiology 73: 42594267.CrossRefGoogle ScholarPubMed
Nielsen, EM, Skov, MN, Madsen, JJ, Lodal, J, Jespersen, JB and Baggesen, DL (2004). Verocytotoxin-producing Escherichia coli in wild birds and rodents in close proximity to farms. Applied and Environmental Microbiology 70: 69446947.CrossRefGoogle ScholarPubMed
Niu, YD, Johnson, RP, Xu, Y, McAllister, TA, Sharma, R, Louie, M and Stanford, K (2009b). Host range and lytic capability of four bacteriophages against bovine and clinical human isolates of Shiga toxin-producing E. coli O157:H7. Journal of Applied Microbiology 107: 646656.CrossRefGoogle Scholar
Niu, YD, McAllister, TA, Xu, Y, Johnson, RP, Stephens, TP and Stanford, K (2009a). Prevalence and impact of bacteriophages on the presence of Escherichia coli O157:H7 in feedlot cattle and their environment. Applied and Environmental Microbiology 75: 12711278.CrossRefGoogle ScholarPubMed
Nørrung, B and Buncic, S (2008). Microbial safety of meat in the European Union. Meat Science 78: 1424.CrossRefGoogle ScholarPubMed
O'Flynn, G, Ross, RP, Fitzgerald, GF and Coffey, A (2004). Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157:H7. Applied and Environmental Microbiology 70: 34173424.CrossRefGoogle ScholarPubMed
Ogden, ID, MacRae, M and Strachan, NJC (2004). Is the prevalence and shedding concentrations of E. coli O157 in beef cattle in Scotland seasonal? FEMS Microbiology Letters 233: 297300.CrossRefGoogle ScholarPubMed
Oliver, SP, Patel, DA, Callaway, TR and Torrence, ME (2008). ASAS Centennial paper: developments and future outlook for preharvest food safety. Journal of Animal Science 87: 419437.CrossRefGoogle ScholarPubMed
Omisakin, F, MacRae, M, Ogden, ID and Strachan, NJC (2003). Concentration and prevalence of Escherichia coli O157 in cattle feces at slaughter. Applied and Environmental Microbiology 69: 24442447.CrossRefGoogle ScholarPubMed
Peterson, RE, Klopfenstein, TJ, Erickson, GE, Folmer, J, Hinkley, S, Moxley, EA and Smith, DR (2007a). Effect of Lactobacillus acidophilus strain NP51 on Escherichia coli O157:H7 fecal shedding and finishing performance in beef feedlot cattle. Journal of Food Protection 70: 287291.CrossRefGoogle ScholarPubMed
Peterson, RE, Klopfenstein, TJ, Moxley, EA, Erickson, GE, Hinkley, S, Bretschneider, G, Berberov, EM, Rogan, D and Smith, DR (2007b). Effect of a vaccine product containing type III secreted proteins on the probability of Escherichia coli O157:H7 fecal shedding and mucosal colonization in feedlot cattle. Journal of Food Protection 70: 25682577.CrossRefGoogle ScholarPubMed
Peterson, RE, Klopfenstein, TJ, Moxley, EA, Erickson, GE, Hinkley, S, Rogan, D and Smith, DR (2007c). Efficacy of dose regimen and observation of herd immunity from a vaccine against Escherichia coli O157:H7 for feedlot cattle. Journal of Food Protection 70: 25612567.CrossRefGoogle ScholarPubMed
Pontrelli, G, Boccia, D, Di Renzi, M, Massari, M, Giugliano, F, Celentano, LP, Taffon, S, Genovese, D, Di Pasquale, SScalise, F, Rapicetta, MCroci, L and Salmaso, S (2008). Epidemiological and virological characterization of a large community-wide outbreak of hepatitis A in southern Italy. Epidemiology and Infection 136: 10271034.CrossRefGoogle ScholarPubMed
Potter, AA, Klashinsky, S, Li, Y, Frey, E, Townsend, H, Rogan, D, Erickson, G, Hinkley, S, Klopfenstein, T, Moxley, RA, Smith, DR and Finlay, BB (2004). Decreased shedding of Escherichia coli O157:H7 by cattle following vaccination with type III secreted proteins. Vaccine 22: 362369.CrossRefGoogle ScholarPubMed
Reid, C-A, Small, A, Avery, SM and Buncic, S (2002). Presence of food-borne pathogens on cattle hides. Food Control 33: 411415.CrossRefGoogle Scholar
Renter, DG, Sargeant, JM, Hygnstorm, SE, Hoffman, JD and Gillespie, JR (2001). Escherichia coli O157:H7 in free-ranging deer in Nebraska. Journal of Wildlife Diseases 37: 755760.CrossRefGoogle ScholarPubMed
Rogan, DR, Smith, DR, Moxley, RA, Potter, AA and Strauss, CE (2009). Vaccination with type III secretion proteins reduces E. coli O157:H7 shedding and contamination in cattle. Veterinary Immunology and Immunopathology 128: 334.CrossRefGoogle Scholar
Rozema, EA, Stephens, TP, Bach, SJ, Okine, EK, Johnson, RP, Stanford, K and McAllister, TA (2009). Oral and rectal administration of bacteriophages for control of Escherichia coli O157:H7 in feedlot cattle. Journal of Food Protection 72: 241250.CrossRefGoogle ScholarPubMed
Rugbjerg, H, Nielsen, EM and Andersen, JS (2003). Risk factors associated with faecal shedding of verocytotoxin-producing Escherichia coli O157 in eight known-infected Danish dairy herds. Preventive Veterinary Medicine 58: 101113.CrossRefGoogle ScholarPubMed
Sargeant, JM, Gillespie, JR, Oberst, RD, Phebus, RK, Hyatt, DR, Bohra, LK and Galland, JC (2000). Results of a longitudinal study of the prevalence of Escherichia coli O157:H7 on cow–calf farms. American Journal of Veterinary Research 61: 13751379.CrossRefGoogle ScholarPubMed
Sargeant, JM, Hafer, DJ, Gillespie, JR, Oberst, RD and Flood, SJ (1999). Prevalence of Escherichia coli O157:H7 in white-tailed deer sharing rangeland with cattle. Journal of the American Veterinary Medical Association 215: 792794.CrossRefGoogle ScholarPubMed
Scaife, HR, Cowan, D, Finney, J, Kinghorn-Perry, SF and Crook, B (2006). Wild rabbits (Oryctolagus cuniculus) as potential carriers of verocytotoxin-producing Escherichia coli. Veterinary Record 159: 175178.CrossRefGoogle ScholarPubMed
Schamberger, GP and Diez-Gonzalez, F (2002). Selection of recently isolated colicinogenic Escherichia coli strains inhibitory to Escherichia coli O157:H7. Journal of Food Protection 65: 13811387.CrossRefGoogle ScholarPubMed
Schamberger, GP and Diez-Gonzalez, F (2005). Assessment of resistance to colicinogenic Escherichia coli by E. coli O157:H7 strains. Journal of Applied Microbiology 98: 245252.CrossRefGoogle Scholar
Schamberger, GP, Phillips, RL, Jacobs, JL and Diez-Gonzalez, F (2004). Reduction of Escherichia coli O157:H7 populations in cattle by addition of colicin E7-producing E. coli to feed. Applied and Environmental Microbiology 70: 60536060.CrossRefGoogle ScholarPubMed
Schrezenmeir, J and de Vrese, M (2001). Probiotics, prebiotics, and synbiotics – approaching a definition. American Journal of Clinical Nutrition 73: 361S364S.CrossRefGoogle ScholarPubMed
Sheng, H, Knecht, HJ, Kudva, IT and Hovde, CJ (2006). Application of bacteriophages to control intestinal Escherichia coli O157:H7 levels in ruminants. Applied and Environmental Microbiology 72: 53595366.CrossRefGoogle ScholarPubMed
Shere, JA, Bartlett, KJ and Kaspar, CW (1998). Longitudinal study of Escherichia coli O157:H7 dissemination on four dairy farms in Wisconsin. Applied and Environmental Microbiology 64: 13901399.CrossRefGoogle ScholarPubMed
Smith, D, Blackford, M, Younts, S, Moxley, R, Gray, J, Hungerford, L, Milton, T and Klopfenstein, T (2001). Ecological relationships between the prevalence of cattle shedding Escherichia coli O157:H7 and characteristics of the cattle or conditions of the feedlot pen. Journal of Food Protection 64: 18991903.CrossRefGoogle ScholarPubMed
Smith, DR, Moxley, RA, Peterson, RE, Klopfenstein, TJ, Erickson, GE, Bretschneider, G, Berberov, EM and Clowser, S (2009). A two-dose regimen of a vaccine against type III secreted proteins reduced Escherichia coli O157:H7 colonization of the terminal rectum in beef cattle in commercial feedlots. Foodborne Pathogens and Disease 6: 155161.CrossRefGoogle ScholarPubMed
Sofos, J (2008). Challenges to meat safety in the 21st century. Meat Science 78: 313.CrossRefGoogle Scholar
Soon, JM, Manning, LJ, Davies, WP and Baines, RN (in press). Fresh produce-associated outbreaks: a call for HACCP on farms? British Food Journal.Google Scholar
Spiehs, MJ, Whitney, MH and Shursinm, GC (2002). Nutrient database for distiller's dried grains with solubles produced from new ethanol plants in Minnesota and South Dakota. Journal of Animal Science 80: 26392645.Google ScholarPubMed
Stanford, K, McAllister, TA, Niu, YD, Stephens, TP, Mazzocco, A, Waddell, TE and Johnson, RP (2010). Oral delivery systems for encapsulated bacteriophages targeted at Escherichia coli O157:H7 in feedlot cattle. Journal of Food Protection 73: 13041312.CrossRefGoogle ScholarPubMed
Stephens, TP, McAllister, TA and Stanford, K (2009). Perineal swabs reveal effect of super shedders on the transmission of Escherichia coli O157:H7 in commercial feedlots. Journal of Animal Science 87: 41514160.CrossRefGoogle ScholarPubMed
Svoboda, KP and Greenaway, RI (2003). Lemon scented plants. International Journal of Aromatherapy 13: 2332.CrossRefGoogle Scholar
Synge, BA, Chase-Topping, ME, Hopkins, GF, McKendrick, IJ, Thomson-Carter, F, Gray, D, Rusbridge, SM, Munro, FI, Foster, G and Gunn, GJ (2003). Factors influencing the shedding of verocytotoxin-producing Escherichia coli O157 by beef suckler cows. Epidemiology and Infection 130: 301312.CrossRefGoogle ScholarPubMed
Tabe, ES, Oloya, J, Doetkott, DK, Bauer, ML, Gibbs, PS and Khaitsa, ML (2008). Comparative effect of direct-fed microbials on fecal shedding of Escherichia coli O157:H7 and Salmonella in naturally infected feedlot cattle. Journal of Food Protection 71: 539544.CrossRefGoogle ScholarPubMed
Thomson, DU, Loneragan, GH, Thornton, AB, Lechtenberg, KF, Emery, DA, Burkhardt, DT and Nagaraja, TG (2009). Use of a siderophore receptor and porin proteins-based vaccine to control the burden of Escherichia coli O157:H7 in feedlot cattle. Foodborne Pathogens and Disease 6: 871877.CrossRefGoogle ScholarPubMed
Tkalcic, S, Zhao, T, Harmon, BG, Doyle, MP, Brown, CA and Zhao, P (2003). Fecal shedding of enterhemorrhagic Escherichia coli in weaned calves following treatment with probiotic Escherichia coli. Journal of Food Protection 66: 11841189.CrossRefGoogle Scholar
USDA (2011). USDA awards grant to Michigan State University researchers to study how E. coli causes foodborne illness. http://www.usda.gov/wps/portalGoogle Scholar
Van Baale, MJ, Sargeant, JM, Gnad, DP, DeBey, BM, Lechtenberg, KF and Nagaraja, TG (2004). Effect of forage or grain diets with or without monensin on ruminal persistence and fecal Escherichia coli O157:H7 in cattle. Applied and Environmental Microbiology 70: 53365342.CrossRefGoogle ScholarPubMed
Van Donkersgoed, J, Berg, J, Potter, A, Hancock, D, Besser, T, Rice, D, LeJeune, J and Klashinsky, S (2001). Environmental sources and transmission of Escherichia coli O157 in feedlot cattle. Canadian Veterinary Journal 42: 714720.Google ScholarPubMed
Van Donkersgoed, J, Hancock, D, Rogan, D and Potter, A (2005). Escherichia coli O157:H7 vaccine field trial in 9 feedlots in Alberta and Saskatchewan. Canadian Veterinary Journal 46: 724728.Google ScholarPubMed
Varel, VH, Wells, JE, Berry, ED, Spiehs, MJ, Miller, DN, Ferrell, CL, Shackelford, SD and Koohmaraie, M (2008). Odorant production and persistence of Escherichia coli in manure slurries from cattle fed zero, twenty, forty, or sixty percent wet distillers grains with solubles. Journal of Animal Science 86: 36173627.CrossRefGoogle ScholarPubMed
Wallace, JS, Cheasty, T and Jones, K (1997). Isolation of vero cytotoxin-producing Escherichia coli O157 from wild birds. Journal of Applied Microbiology 82: 399404.CrossRefGoogle ScholarPubMed
Ward, WR, Hughes, JW, Faull, WB, Cripps, PJ, Sutherland, JP and Sutherst, JE (2002). Observational study of temperature, moisture, pH and bacteria in straw bedding, and faecal consistency, cleanliness and mastitis in cows in four dairy herds. Veterinary Record 151: 199206.CrossRefGoogle ScholarPubMed
Wegener, HC, Hald, T, Lo, Fo, Wong, D, Madsen, M, Korsgaard, H, Bager, F, Gerner-Smidt, P and Mølbak, K (2003). Salmonella control programs in Denmark. Emerging Infectious Diseases 9: 774780.CrossRefGoogle ScholarPubMed
Wells, JE, Berry, ED and Varel, VH (2005). Effects of common forage phenolic acids on Escherichia coli O157:H7 viability in bovine feces. Applied and Environmental Microbiology 71: 79747979.CrossRefGoogle ScholarPubMed
Wells, JE, Shackelford, SD, Berry, ED, Kalchayanand, N, Guerini, MN, Varel, VH, Arthur, TM, Bosilevac, JM, Freetly, HC, Wheeler, TL, Ferrell, CL and Koohmaraie, M (2009). Prevalence and level of Escherichia coli O157:H7 in feces and on hides of feedlot steers fed diets with or without wet distillers grains with solubles. Journal of Food Protection 72: 16241633.CrossRefGoogle ScholarPubMed
Wetzel, AN and LeJeune, JT (2006). Clonal dissemination of Escherichia coli O157:H7 subtypes among dairy farms in Northeast Ohio. Applied and Environmental Microbiology 72: 26212626.CrossRefGoogle ScholarPubMed
Wood, JC, McKendrick, IJ and Gettinby, G (2006). Assessing the efficacy of within-animal control strategies against E. coli O157: a simulation study. Preventive Veterinary Medicine 74: 194211.CrossRefGoogle ScholarPubMed
Wood, JC, McKendrick, IJ and Gettinby, G (2007). A simulation model to assess herd-level intervention strategies against E. coli O157 . Epidemiology and Infection 135: 749764.CrossRefGoogle ScholarPubMed
Younts-Dahl, SM, Galyean, ML, Loneragan, GH, Elam, NA and Brashears, MM (2004). Dietary supplementation with Lactobacillus- and Propionibacterium-based direct-fed microbials and prevalence of Escherichia coli O157 in beef feedlot cattle and on hides at harvest. Journal of Food Protection 67: 889893.CrossRefGoogle ScholarPubMed
Zhao, S, McDermott, PF, Friedman, S, Abbott, J, Ayers, S, Glenn, A, Hall-Robinson, E, Hubert, SK, Harbottle, H, Walker, RD, Chiller, TM and White, DG (2006). Antimicrobial resistance and genetic relatedness among Salmonella from retail foods of animal origin: NARMS retail meat surveillance. Foodborne Pathogen and Diseases 3: 106117.CrossRefGoogle ScholarPubMed
Zhao, T, Tkalcic, S, Doyle, MP, Harmon, BG, Brown, CA and Zhao, P (2003). Pathogenicity of enterohemorrhagic Escherichia coli in neonatal calves and evaluation of fecal shedding by treatment with probiotic Escherichia coli. Journal of Food Protection 66: 924930.CrossRefGoogle ScholarPubMed