Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-01T17:48:21.753Z Has data issue: false hasContentIssue false

Escherichia coli O157:H7: an update on intestinal colonization and virulence mechanisms

Published online by Cambridge University Press:  28 February 2007

Rodney A. Moxley*
Affiliation:
Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
*
Rodney A. Moxley, Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583–0905, USA. E-mail: [email protected]

Abstract

Cattle are a major reservoir of Escherichia coli O157:H7, an important zoonotic pathogen that causes hemorrhagic colitis and hemolytic uremic syndrome (HUS). Colonization of cattle occurs predominantly in the large intestine, and may especially target follicle-associated epithelium (FAE) in the terminal rectum. Bacterial colonization involves induction of attaching–effacing (A/E) lesions, mediated by type III secreted proteins and an outer membrane protein called intimin. ToxB, encoded on plasmid pO157, contributes to adherence of E. coli O157:H7 through promotion of the production and/or secretion of type III secreted proteins. Production of type III secreted proteins and intestinal colonization appear to involve quorum-sensing mechanisms. In the human host, E. coli O157:H7 may have a preference for FAE in the distal small intestine. The H7 flagellum induces production of chemokines such as interleukin 8, and neutrophilic infiltration of the intestinal mucosa, which in turn may enhance Shiga toxin (Stx) uptake across the intestinal epithelium. Both Stx and cytokine responses play critical roles in the induction of the vascular lesions that underlie hemorrhagic colitis and HUS. In cattle, Stx binds to intestinal crypt cells and submucosal lymphocytes but not vascular endothelium. The role played by Stx in cattle may be to suppress mucosal immunity, yet enhance other effects that promote intestinal colonization.

Type
Review Article
Copyright
Copyright © CAB International 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, A, de Grado, M, Pfuetzner, RA, Sanchez-Sanmartin, C, DeVinney, R, Puente, JL, Strynadka, NC and Finlay, BB (1999). Enteropathogenic Escherichia coli translocated intimin receptor, Tir, requires a specific chaperone for stable secretion. Molecular Microbiology 33: 11621175.CrossRefGoogle ScholarPubMed
Abe, H, Tatsuno, I, Tobe, T, Okutani, A and Sasakawa, C (2002). Bicarbonate ion stimulates the expression of locus of enterocyte effacement-encoded genes in enterohemorrhagic Escherichia coli O157:H7. Infection and Immunity 70: 35003509.CrossRefGoogle ScholarPubMed
Acheson, DWK, Moore, R, De Breucker, S, Lincicome, L, Jacewicz, M, Skutelsky, E and Keusch, GT (1996). Translocation of Shiga toxin across polarized intestinal cells in tissue culture. Infection and Immunity 64: 32943300.CrossRefGoogle ScholarPubMed
Acheson, DWK, Lincicome, LL, Jacewicz, MS and Keusch, GT (1998). Shiga toxin interaction with intestinal epithelial cells. In: Kaper, JB and O'Brien, AD, editors. Escherichia coli O157:H7 and Other Shiga Toxin-producing E. coli Strains. Washington, DC: ASM Press, pp. 140147.Google Scholar
Adu-Bobie, J, Frankel, G, Bain, C, Goncalves, AG, Trabulsi, LR, Douce, G, Knutton, S and Dougan, G (1998). Detection of intimins α, β, γ and δ, four intimin derivatives expressed by attaching and effacing microbial pathogens. Journal of Clinical Microbiology 36: 662668.CrossRefGoogle ScholarPubMed
Armstrong, GL, Hollingsworth, J and Morris, JG (1996). Emerging food-borne pathogens: Escherichia coli O157:H7 as a model of entry of a new pathogen into the food supply of the developed world. Epidemiologic Reviews 18: 2951.CrossRefGoogle Scholar
Badea, L, Doughty, S, Nicholls, L, Sloan, J, Robins-Browne, RM and Hartland, EL (2003). Contribution of Efa1/LifA to the adherence of enteropathogenic Escherichia coli to epithelial cells. Microbial Pathogenesis 34: 205215.CrossRefGoogle Scholar
Baehler, AA and Moxley, RA (2000). Escherichia coli O157:H7 induces attaching-effacing lesions in large intestinal mucosal explants from adult cattle. FEMS Microbiology Letters 185: 239242.CrossRefGoogle ScholarPubMed
Baehler, AA and Moxley, RA (2002). Effect of culture conditions on Escherichia coli O157:H7-mediated attaching-effacing lesions in a bovine large intestinal mucosal explant model. FEMS Microbiology Letters 212: 107110.Google Scholar
Barkocy-Gallagher, GA, Arthur, TM, Siragusa, GR, Keen, JE, Elder, RO, Laegreid, WW and Koohmaraie, M (2001). Genotypic analyses of Escherichia coli O157:H7 and O157 nonmotile isolates recovered from beef cattle and carcasses at processing plants in the Midwestern states of the United States. Applied and Environmental Microbiology 67: 38103818.CrossRefGoogle ScholarPubMed
Barkocy-Gallagher, GA, Berry, ED, Rivera-Betancourt, M, Arthur, TM, Nou, X and Koohmaraie, M (2002). Development of methods for the recovery of Escherichia coli O157:H7 and Salmonella from beef carcass sponge samples and bovine fecal and hide samples. Journal of Food Protection 65: 15271534.CrossRefGoogle ScholarPubMed
Berin, MC, Darfeuille-Michaud, A, Egan, LJ, Miyamoto, Y and Kagnoff, MF (2002). Role of EHEC O157:H7 virulence factors in the activation of intestinal epithelial cells NF-κB and MAP kinase pathways and the upregulated expression of interleukin-8. Cellular Microbiology 4: 635647.CrossRefGoogle ScholarPubMed
Besser, TE, Hancock, DD, Pritchard, LC, McRae, EM, Rice, DH and Tarr, PI (1997). Duration of detection of fecal excretion of Escherichia coli O157:H7 in cattle. Journal of Infectious Diseases 175: 726729.CrossRefGoogle ScholarPubMed
Bielaszewska, M, Janda, J, Blahova, K, Minarikova, H, Jikova, E, Karmali, MA, Laubova, J, Sikulova, J, Preston, MA, Khakhria, R, Karch, H, Klazarova, H and Nyc, O (1997). Human Escherichia coli O157:H7 infection associated with the consumption of unpasteurized goat's milk. Epidemiology and Infection 119: 299305.CrossRefGoogle ScholarPubMed
Blanco, M, Blanco, J, Blanco, JE and Ramos, J (1993). Enterotoxigenic, verotoxigenic, and necrotoxigenic Escherichia coli isolated from cattle in Spain. American Journal of Veterinary Research 54: 14461451.CrossRefGoogle ScholarPubMed
Brashears, MM, Galyean, ML, Loneragan, GH, Mann, JE and Killinger-Mann, K (2003a). Prevalence of Escherichia coli O157:H7 and performance by beef feedlot cattle given Lactobacillus direct-fed microbials. Journal of Food Protection 66: 748754.CrossRefGoogle ScholarPubMed
Brashears, MM, Jaroni, D and Trimble, J (2003b). Isolation, selection, and characterization of lactic acid bacteria for a competitive exclusion product to reduce shedding of Escherichia coli O157:H7 in cattle. Journal of Food Protection 66: 355363.CrossRefGoogle ScholarPubMed
Brown, CA, Harmon, BG, Zhao, T and Doyle, MP (1997). Experimental Escherichia coli O157:H7 carriage in calves. Applied and Environmental Microbiology 63: 2732.CrossRefGoogle ScholarPubMed
Breuer, T, Benkel, DH, Shapiro, RL, Hall, WN, Winnett, MM, Linn, MJ, Neimann, J, Barrett, TJ, Dietrich, S, Downes, FP, Toney, DM, Pearson, JL, Rolka, H, Slutsker, L and Griffin, PM (2001). A multistate outbreak of Escherichia coli O157:H7 infections linked to alfalfa sprouts grown from contaminated seeds. Emerging Infectious Diseases 7: 977982.CrossRefGoogle ScholarPubMed
Brunder, W, Schmidt, H and Karch, H. (1997). EspP, a novel extracellular serine protease of enterohaemorrhagic Escherichia coli O157:H7 cleaves human coagulation factor V. Molecular Microbiology 24: 767778.CrossRefGoogle ScholarPubMed
Buchko, SJ, Holley, RA, Olson, WO, Gannon, VP and Veira, DM (2000). The effect of different grain diets on fecal shedding of Escherichia coli O157:H7 by steers. Journal of Food Protection 63: 14671474.CrossRefGoogle ScholarPubMed
Burland, V, Shao, Y, Perna, NT, Plunkett, G, Sofia, HJ and Blattner, FR (1998). The complete DNA sequence and analysis of the large virulence plasmid of Escherichia coli O157:H7. Nucleic Acids Research 26: 41964204.CrossRefGoogle ScholarPubMed
Callaway, TR, Elder, RO, Keen, JE, Anderson, RC and Nisbet, DJ (2003). Forage feeding to reduce preharvest Escherichia coli populations in cattle, a review. Journal of Dairy Science 86: 852860.CrossRefGoogle ScholarPubMed
Cantey, JR (1985). Shiga toxin—an expanding role in the pathogenesis of infectious diseases. Journal of Infectious Diseases 151: 766771.CrossRefGoogle ScholarPubMed
Chapman, PA and Ackroyd, HJ (1997). Farmed deer as a potential source of verocytotoxin-producing Escherichia coli O157:H7. Veterinary Record 141: 314315.Google Scholar
Chart, H, Jenkins, C, Smith, RR and Rowe, B (1998). Serum antibodies to secreted proteins in patients infected with Escherichia coli O157 and other VTEC. Epidemiology and Infection 120: 239243.CrossRefGoogle ScholarPubMed
Chen, X, Schauder, S, Potier, N, Van Dorssealaer, A, Pelczer, I, Bassler, BL and Hughson, FM (2002). Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415: 545549.CrossRefGoogle ScholarPubMed
Cheville, AM, Arnold, KW, Buchrieser, C, Cheng, CM and Kaspar, CW (1996). rpoS regulation of acid, heat, and salt tolerance in Escherichia coli O157:H7. Applied and Environmental Microbiology 62: 18221824.CrossRefGoogle ScholarPubMed
Ching, JCY, Jones, NL, Ceponis, PJM, Karmali, MA and Sherman, PM (2002). Escherichia coli Shiga-like toxins induce apoptosis and cleavage of poly(ADP-ribose) polymerase in vitro activation of caspases. Infection and Immunity 70: 46694677.CrossRefGoogle ScholarPubMed
Cornick, NA, Booher, SL and Moon, HW (2000). Persistent colonization of sheep by E. coli O157:H7 and other pathotypes of E. coli. Applied and Environmental Microbiology 66: 49264934.CrossRefGoogle Scholar
Cornick, NA, Booher, SL and Moon, HW (2002). Intimin facilitates colonization by Escherichia coli O157:H7 in adult ruminants. Infection and Immunity 70: 27042707.CrossRefGoogle ScholarPubMed
Cray, WC Jr and Moon, HW (1995). Experimental infection of calves and adult cattle with Escherichia coli O157:H7. Applied and Environmental Microbiology 61: 15861590.CrossRefGoogle ScholarPubMed
Crump, JA, Sulka, AC, Langer, AJ, Schaben, C, Crielly, AS, Gage, R, Baysinger, M, Moll, M, Withers, G, Toney, DM, Hunter, SB, Hoekstra, RM, Wong, SK, Griffin, PM and Van Gilder, TJ (2002). An outbreak of Escherichia coli O157:H7 infections among visitors to a dairy farm. New England Journal of Medicine 347: 608609.CrossRefGoogle ScholarPubMed
Dean-Nystrom, EA, Bosworth, BT, Cray, WC and Moon, HW (1997). Pathogenicity of Escherichia coli O157:H7 in the intestines of neonatal calves. Infection and Immunity 65: 18421848.CrossRefGoogle ScholarPubMed
Dean-Nystrom, EA, Bosworth, BT, Moon, HW, and O'Brien, AD (1998). Escherichia coli O157:H7 requires intimin for enteropathogenicity in calves. Infection and Immunity 66: 45604563.CrossRefGoogle ScholarPubMed
Dean-Nystrom, EA, Bosworth, BT, O'Brien, AD and Moon, HW (1999). Bovine infection with Escherichia coli O157:H7, In: Stewart, CS and Flint, HJ, editors. E. coli O157 in Farm Animals. CABI, Wallingford, UK, pp. 5158.Google Scholar
Dean-Nystrom, EA, Gansheroff, LJ, Mills, M, Moon, HW and O'Brien, AD (2002). Vaccination of pregnant dams with intimin O157 protects suckling piglets from Escherichia coli O157:H7 infection. Infection and Immunity 70: 24142418.CrossRefGoogle ScholarPubMed
Deibel, C, Krämer, S, Chakraborty, T and Ebel, F (1998). EspE, a novel secreted protein of attaching and effacing bacteria, is directly translocated into infected host cells, where it appears as a tyrosine-phosphorylated 90-kDa protein. Molecular Microbiology 28: 463474.CrossRefGoogle Scholar
DeVinney, R, Stein, M, Reischeid, D, Abe, A, Ruschkowski, S and Finlay, BB (1999). Enterohemorrhagic Escherichia coli O157:H7 produces Tir, which is translocated to the host cell membrane but is not tyrosine phosphorylated. Infection and Immunity 67: 23892398.CrossRefGoogle Scholar
Diez-Gonzalez, F and Russell, JB (1999). Factors affecting the extreme acid resistance of Escherichia coli O157:H7. Food Microbiology 16: 367374.CrossRefGoogle Scholar
Diez-Gonzalez, F, Callaway, TR, Kizoulis, MG and Russell, JB (1998). Grain feeding and dissemination of acid-resistant Escherichia coli from cattle. Science 281: 16661668.CrossRefGoogle ScholarPubMed
Djafari, S, Ebel, F, Deibel, C, Krämer, S, Hudel, M and Chakraborty, T (1997). Characterization of an exported protease from Shiga toxin-producing Escherichia coli. Molecular Microbiology 25: 771784.CrossRefGoogle ScholarPubMed
Donnenberg, MS and Whittam, TS (2001). Pathogenesis and evolution of virulence in enteropathogenic and enterohemorrhagic Escherichia coli. Journal of Clinical Investigation 107: 539548.CrossRefGoogle ScholarPubMed
Donnenberg, MS, Girón, JA, Nataro, JP and Kaper, JB (1992). A plasmid-encoded type IV fimbrial gene of enteropathogenic Escherichia coli associated with localized adherence. Molecular Microbiology 6: 34273437.CrossRefGoogle ScholarPubMed
Donnenberg, MS, Tzipori, S, McKee, M, O'Brien, ADAlroy, J and Kaper, J (1993). The role of the eae gene of enterohemorrhagic E. coli in intimate attachment in vitro and in a porcine model. Journal of Clinical Investigation 92: 14181424.CrossRefGoogle ScholarPubMed
Duffy, G (2003). Verocytotoxigenic Escherichia coli in animal faeces, manures and slurries. Journal of Applied Microbiology 94: (Supplement): 94S103S.CrossRefGoogle Scholar
Ebel, F, Deibel, C, Kresse, AU, Guzmán, CA and Chakraborty, T (1996). Temperature- and medium-dependent secretion of proteins by Shiga toxin-producing Escherichia coli. Infection and Immunity 64: 44724479.CrossRefGoogle ScholarPubMed
Ebel, F, Podzadel, T, Rohde, M, Kresse, AU, Kramer, S, Deibel, C, Guzmán, CA and Chakraborty, T (1998). Initial binding of Shiga toxin-producing Escherichia coli to host cells and subsequent induction of actin rearrangements depend on filamentous EspA-containing surface appendages. Molecular Microbiology 30: 147161.CrossRefGoogle ScholarPubMed
Elam, NA, Gleghorn, JF, Rivera, JD, Galyean, ML, Defoor, PJ, Brashears, MM and Younts-Dahl, SM (2003). Effects of live cultures of Lactobacillus acidophilus (strains NP44 and NP51) and Propionibacterium freudenreichii on performance, carcass, and intestinal characteristics, and Escherichia coli O157 shedding of finishing beef steers. Journal of Animal Science 81: 26862698.CrossRefGoogle Scholar
Elder, RO, Keen,, JE, Siragusa, GR, Barkocy-Gallagher, AG, Koohmaraie, M and Laegreid, WW (2000). Correlation of enterohemorrhagic Escherichia coli O157:H7 prevalence in feces, hides, and carcasses of beef cattle during processing. Proceedings of the National Academy of Sciences of the United States of America 97: 29993003.CrossRefGoogle ScholarPubMed
Elliott, SJ, Sperandio, V, Girón Shin,, S, Mellies, JL, Wainwright, LA, Shutcheson, SW, McDaniel, TK and Kaper, JB (2000). The locus of enterocyte effacement (LEE)-encoded regulator (Ler) controls expression of both LEE- and non-LEE-encoded virulence factors in enteropathogenic and enterohemorrhagic Escherichia coli. Infection and Immunity 68: 61156126.CrossRefGoogle Scholar
Fegan, N, Higgs, G, Vanderlinde, P and Desmarchelier, P (2003). Enumeration of Escherichia coli O157 in cattle faeces using most probable number technique and automated immunomagnetic separation. Letters in Applied Microbiology 38: 5659.CrossRefGoogle Scholar
Feng, P, Lampel, KA, Karch, H and Whittam, T (1998). Genotypic and phenotypic changes in the emergence of Escherichia coli O157:H7. Journal of Infectious Diseases 177: 17501753.CrossRefGoogle ScholarPubMed
Fenwick, BW and Cowan, LA (1998). Canine model of hemolytic-uremic syndrome. In: Kaper, JB and O'Brien, AD, editors. Escherichia coli O157:H7 and Other Shiga Toxin-Producing E. coli Strains Washington, DC: ASM Press, pp. 268277.Google Scholar
Finlay, BB, Rosenshine, I, Donnenberg, MS and Kaper, JB (1992). Cytoskeletal composition of attaching and effacing lesions associated with enteropathogenic Escherichia coli adherence to HeLa cells. Infection and Immunity 60: 25412543.CrossRefGoogle ScholarPubMed
Fischer, J, Zhao, T, Doyle, MP, Goldberg, MR, Brown, CA, Sewell, CT, Kavanaugh, DM and Bauman, CD (2001). Experimental and field studies of Escherichia coli O157:H7 in white-tailed deer. Applied and Environmental Microbiology 67: 12181224.CrossRefGoogle ScholarPubMed
Fitzhenry, RJ, Pickard, DJ, Hartland, EL, Reece, S, Dougan, G, Phillips, AD and Frankel, G (2002). Intimin type influences the site of human intestinal mucosal colonization by enterohaemorrhagic Escherichia coli O157:H7. Gut 50: 180185.CrossRefGoogle ScholarPubMed
Folmer, J, Macken, C, Moxley, R, Smith, D, Brashears, M, Hinkley, S, Erickson, G and Klopfenstein, T (2003). Intervention strategies for reduction of E. coli O157:H7 in feedlot steers. In: University of Nebraska Cooperative Extension, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln (NE): 2003 Nebraska Beef Report, pp. 2223.Google Scholar
Frankel, G, Lider, O, Hershkoviz, R, Mould, AP, Kachalsky, SG, Candy, DCA, Cahalon, L, Humphries, MJ and Dougan, G (1996). The cell-binding domain of intimin from enteropathogenic Escherichia coli binds to beta1 integrins. Journal of Biological Chemistry 271: 2035920364.CrossRefGoogle ScholarPubMed
Frankel, G, Phillips, AD, Rosenshine, I, Dougan, G, Kaper, JB and Knutton, S (1998). Enteropathogenic and enterohaemorrhagic Escherichia coli: more subversive elements. Molecular Microbiology 30: 911921.CrossRefGoogle ScholarPubMed
Fu, CJ, Porter, JH, Felton, EED, Lehmkuhler, JW and Kerley, MS (2003). Pre-harvest factors influencing the acid-resistance of Escherichia coli and E. coli O157:H7. Journal of Animal Science 81: 10801087.CrossRefGoogle ScholarPubMed
Gansheroff, LJ and O'Brien, AD (2000). Escherichia coli O157:H7 in beef cattle presented for slaughter in the U.S.: higher prevalence rates than previously estimated. Proceedings of the National Academy of Sciences of the United States of America 97: 29592961.CrossRefGoogle ScholarPubMed
Ghaem-Maghami, M, Simmons, CP, Daniell, S, Pizza, M, Lewis, D, Frankel, G and Dougan, G (2001). Intimin-specific immune responses prevent bacterial colonization by the attaching-effacing pathogen Citrobacter rodentium. Infection and Immunity 69: 55975605.CrossRefGoogle ScholarPubMed
Gordon, J and Small, PLC (1993). Acid resistance in enteric bacteria. Infection and Immunity 61: 364367.CrossRefGoogle Scholar
Grauke, LJ, Kudva, IT, Yoon, JW, Hunt, CW, Williams, CJ and Hovde, CJ. (2002) Gastrointestinal tract location of Escherichia coli O157:H7 in ruminants. Applied and Environmental Microbiology 68: 22692277.CrossRefGoogle ScholarPubMed
Griffin, PM (2003). Epidemiology of 283 outbreaks of Escherichia coli O157:H7 infections in the 20th century, United States. In: VTEC 2003: Proceedings of the 5th International Symposium and Workshop on Shiga Toxin (Verocytotoxin)-Producing Escherichia coli Infections, Edinburgh, Scotland, June 8–11 Abstract no. O-2, p. 17.Google Scholar
Griffin, PM and Tauxe, RV (1991). The epidemiology of infections caused by Escherichia coli O157:H7, other enterohemorrhagic E. coli and the associated hemolytic uremic syndrome. Epidemiologic Reviews 13: 6098.CrossRefGoogle ScholarPubMed
Griffin, PM, Mead, PS, Van Gilder, T, Hunter, SB, Strockbine, NA and Tauxe, RV (2000). Shiga toxin-producing E. coli infections in the United States: current status and challenge. In: VTEC 2000: Proceedings of the 4th International Symposium and Workshop on Shiga Toxin (Verocytotoxin)-Producing Escherichia coli Infections, Kyoto, Japan, October 29-November 2. Abstract no. P1–1, p. 31.Google Scholar
Hartlund, EL, Daniell, SJ, Delahay, RM, Neves, BC, Wallis, T, Shaw, RK, Hale, C, Knutton, S and Frankel, G (2000). The type III protein translocation system of enteropathogenic Escherichia coli involves EspA-EspB protein interactions. Molecular Microbiology 35: 14831492.CrossRefGoogle Scholar
Hayashi, T, Makino, K, Ohnishi, M, Kurokawa, K, Ishii, K, Yokoyama, K, Han, CG, Ohtsubo, E, Nakayama, K, Murata, T, Tanaka, M, Tobe, T, Iida, T, Takami, H, Honda, T, Sasakawa, C, Ogasawara, N, Yasunaga, T, Kuhara, S, Shiba, T, Hattori, M and Shinagawa, H (2001). Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Research 8: 1122.CrossRefGoogle ScholarPubMed
Heuvelink, AE, van Heerwaarden, C, Zwartkruis-Nahuis, JT, van Oosterom, R, Edink, K, van Duynhoven, YT and de Boer, E (2002). Escherichia coli O157 infection associated with a petting zoo. Epidemiology and Infection 129: 295302.CrossRefGoogle ScholarPubMed
Hoey, DE, Currie, C, Else, RW, Nutikka, A, Lingwood, CA, Gally, DL and Smith, DG (2002). Expression of receptors for verotoxin 1 from Escherichia coli O157 on bovine intestinal epithelium. Journal of Medical Microbiology 51: 143149.CrossRefGoogle ScholarPubMed
Hoey, DE, Sharp, L, Currie, C, Lingwood, CA, Gally, DL and Smith, DG (2003). Verotoxin 1 binding to intestinal crypt epithelial cells results in localization to lysosomes and abrogation of toxicity. Cell Microbiology 5: 8597.CrossRefGoogle ScholarPubMed
Hovde, CJ, Austin, PR, Cloud, KA, Williams, CJ and Hunt, CW (1999). Effect of cattle diet on Escherichia coli O157:H7 acid resistance. Applied and Environmental Microbiology 65: 32333235.CrossRefGoogle ScholarPubMed
Janka, A, Bielaszewska, M, Dobrindt, U and Karch, H (2002). Identification and distribution of the enterohemorrhagic Escherichia coli factor for adherence (efa1) gene in sorbitol-fermenting Escherichia coli O157:H -. International Journal of Medical Microbiology 292: 207214.CrossRefGoogle ScholarPubMed
Jarvis, KG and Kaper, JB (1996). Secretion of extracellular proteins by enterohemorrhagic Escherichia coli via a putative type III secretion system. Infection and Immunity 64: 48264829.CrossRefGoogle Scholar
Jarvis, GN and Russell, JB (2001). Differences in Escherichia coli culture conditions can have a large impact on the induction of extreme acid resistance. Current Microbiology 43: 215219.CrossRefGoogle ScholarPubMed
Jerse, AE, Yu, J, Tall, BD and Kaper, JB (1990). A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proceedings of the National Academy of Sciences of the United States of America 87: 78397843.CrossRefGoogle ScholarPubMed
Johnson, RP, Cray, WC Jr and Johnson, ST (1996). Serum antibody responses of cattle following experimental infection with Escherichia coli O157:H7. Infection and Immunity 64: 18791883.CrossRefGoogle ScholarPubMed
Judge, NA, Mason, HS and O'Brien, AD (2004). Plant cell-based intimin vaccine given orally to mice primed with intimin reduces time of Escherichia coli O157:H7 shedding in feces. Infection and Immunity 72: 168175.CrossRefGoogle ScholarPubMed
Kassenborg, HD, Hedberg, CW, Hoekstra, , Evans, MC, Chin, AE, Marcus, R, Vugia, DJ, Smith, K, Desai Ahuja, S, Slutsker, L and Griffin, PM (2004) Farm visits and undercooked hamburgers as major risk factors for sporadic Escherichia coli O157:H7 infection: data from a case–control study in 5 FoodNet sites. Clinical Infectious Diseases 38 (Supplement 3): 52715278.CrossRefGoogle ScholarPubMed
Keen, JE and Elder, RO (2002). Isolation of Shiga-toxigenic Escherichia coli O157 from hide surfaces and the oral cavity of finished beef feedlot cattle. Journal of the American Veterinary Medical Association 220: 756763.CrossRefGoogle ScholarPubMed
Keen, JE, Uhlich, GA and Elder, RO (1999). Effects of hay- and grain-based diets on fecal shedding of naturally-acquired enterohemorrhagic E. coli (EHEC) O157:H7 in beef feedlot cattle. 80th Conference of Research Workers in Animal Diseases, Abstract #86, Nov. 7–9, 1999, Chicago, IL.Google Scholar
Keenan, KP, Sharpnack, DD, Collins, H, Formal, SB and O'Brien, AD (1986). Morphologic evaluation of the effects of Shiga toxin and E. coli Shiga-like toxin on the rabbit intestine. American Journal of Pathology 125: 6986.Google Scholar
Kenny, B and Finlay, BB (1995). Protein secretion by enteropathogenic Escherichia coli is essential for transducing signals to epithelial cells. Proceedings of the National Academy of Sciences of the United States of America 92: 79917995.CrossRefGoogle ScholarPubMed
Kenny, B, DeVinney, R, Stein, M, Reinscheid, DJ, Frey, EA and Finlay, BB (1997). Enteropathogenic Escherichia coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91: 511520.CrossRefGoogle ScholarPubMed
Keusch, GT, Grady, GF, Mata, LJ and McIver, J (1972). The pathogenesis of Shigella diarrhea. I. Enterotoxin production by Shigella dysenteriae 1. Journal of Clinical Investigation 51: 28.Google Scholar
Khaitsa, ML, Smith, DR, Stoner, JA, Parkhurst, AM, Hinkley, S, Klopfenstein, TJ and Moxley, RA (2003). Incidence, duration, and prevalence of Escherichia coli O157:H7 fecal shedding by feedlot cattle during the finishing period. Journal of Food Protection 66: 19721977.CrossRefGoogle ScholarPubMed
Kim, J, Nietfeldt, J and Benson, AK (1999). Octamer-based genome scanning distinguishes a unique subpopulation of Escherichia coli O157:H7 in cattle. Proceedings of the National Academy of Sciences of the United States of America 96: 1328813293.CrossRefGoogle ScholarPubMed
Klapproth, JM, Scaletsky, ICA, McNamara, BP, Lai, LC, Malstrom, C, James, SP and Donnenberg, MS (2000). A large toxin from pathogenic Escherichia coli strains that inhibits lymphocyte activation. Infection and Immunity 68: 21482155.CrossRefGoogle ScholarPubMed
Knutton,, S, Rosenshine, I, Pallen, MJ, Nisan, I, Neves, BC, Bain, C, Wolff, C, Dougan, G and Frankel, G (1998). A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. European Molecular Biology Organization Journal 17: 21662176.CrossRefGoogle ScholarPubMed
Krause, DO, Smith, WJM, Conlan, LL, Gough, JM, Williamson, MA and McSweeney, CS (2003). Diet influences the ecology of lactic acid bacteria and Escherichia coli along the digestive tract of cattle: neural networks and 16S rDNA. Microbiology 149: 5765.CrossRefGoogle Scholar
Kresse, AU, Schulze, K, Deibel, C, Ebel, F, Rohde, M, Chakraborty, T and Guzman, CA (1998). Pas, a novel protein required for protein secretion and attaching and effacing activities of enterohemorrhagic Escherichia coli. Journal of Bacteriology 180: 43704379.CrossRefGoogle Scholar
Kudva, IT, Hatfield, PG and Hovde, CJ (1995). Effect of diet on the shedding of Escherichia coli O157:H7 in a sheep model. Applied and Environmental Microbiology 61: 13631370.CrossRefGoogle Scholar
Kudva, IT, Hunt, CW, Williams, CJ, Nance, UM and Hovde, CJ (1997). Evaluation of dietary influences on Escherichia coli O157:H7 shedding by sheep. Applied and Environmental Microbiology 63: 38783886.CrossRefGoogle ScholarPubMed
Kudva, IT, Jelacic, S, Tarr, PI, Younderian, P and Hovde, CJ (1999). Biocontrol of Escherichia coli O157 with O157-specific bacteriophages. Applied and Environmental Microbiology 65: 37673773.CrossRefGoogle ScholarPubMed
Laegreid, WW, Hoffman, M, Keen, J, Elder, R and Kwang, J. (1998). Development of a blocking enzyme-linked immunosorbent assay for detection of serum antibodies to O157 antigen of Escherichia coli. Clinical and Diagnostic Immunology 5: 242246.CrossRefGoogle ScholarPubMed
Laegreid, WW, Elder, RO and Keen, JE (1999). Prevalence of Escherichia coli O157:H7 in range beef calves at weaning. Epidemiology and Infection 123: 291298.CrossRefGoogle ScholarPubMed
LeJeune, JT, Besser, TE, Rice, DH, Berg, JL, Stilborn, RP and Hancock, DD (2004). Longitudinal study of Escherichia coli O157:H7 in feedlot cattle: predominance and persistence of specific clonal types despite massive cattle population turnover. Applied and Environmental Microbiology 70: 377384.CrossRefGoogle ScholarPubMed
Levine, MM (1987). Escherichia coli that cause diarrhea: enterotoxigenic, enteropathogenic, enteroinvasive, enterohemorrhagic and enteroadherent. Journal of Infectious Diseases 155: 377389.CrossRefGoogle ScholarPubMed
Li, Y, Frey, E, Mackenzie, AMR and Finlay, BB (2000). Human response to Escherichia coli O157:H7 infection: antibodies to secreted virulence factors. Infection and Immunity 68: 50905095.CrossRefGoogle ScholarPubMed
Lin, J, Smith, MP, Chapin, KC, Baik, HS, Bennett, GN and Foster, JW (1996). Mechanisms of acid resistance in enterohemorrhagic Escherichia coli. Applied and Environmental Microbiology 62: 30943100.CrossRefGoogle ScholarPubMed
Lingwood, CA, Mylvaganam, M, Arab, S, Khine, AA, Magnusson, G, Grinstein, S and Nyholm, PG (1998). In: Kaper, JB and O'Brien, AD, editors. Escherichia coli O157:H7 and Other Shiga Toxin-Producing E. coli Strains Washington, DC: ASM Press, pp. 129139.Google Scholar
Magnuson, BA, Davis, M, Hubele, S, Austin, PR, Kudva, IT, Williams, CJ, Hunt, CW and Hovde, CJ (2000). Ruminant gastrointestinal cell proliferation and clearance of Escherichia coli O157:H7. Infection and Immunity 68: 38083814.CrossRefGoogle ScholarPubMed
Malstrom, C and James, S (1998). Inhibition of murine splenic and mucosal lymphocyte function by enteric bacterial products. Infection and Immunity 66: 31203127.CrossRefGoogle ScholarPubMed
Maroeska, D, te Loo, WM, Monnens, LAH, van der Velden, TJAM, Vermeer, MA, Preyers, F, Demacker, PNM, van den Heuvel, LPWJ and van Hinsbergh, VWM (2000). Binding and transfer of verocytotoxin by polymorphonuclear leukocytes in hemolytic uremic syndrome. Blood 95: 33963402.Google Scholar
Maroeska, D, te Loo, WM, van Hinsbergh, VWM, van den Heuvel, LPWJ and Monnens, LAH (2001). Detection of verocytotoxin bound to circulating polymorphonuclear leukocytes of patients with hemolytic uremic syndrome. Journal of the American Society of Nephrology 12: 800806.Google Scholar
McAllister, TA, Chen, KJ, Rohde, LM, Forsberg, CW and Costerton, JW (1990). Digestion of barley, maize and wheat by selected species of ruminal bacteria. Applied and Environmental Microbiology 56: 31463153.CrossRefGoogle ScholarPubMed
McEvoy, JM, Doherty, AM, Sheridan, JJ, Thomson-Carter, FM, Garvey, P, McGuire, L, Blair, IS and McDowell, DA (2003). The prevalence and spread of Escherichia coli O157:H7 at a commercial beef abattoir. Journal of Applied Microbiology 95: 256266.CrossRefGoogle Scholar
McKee, ML, Melton-Celsa, AR, Moxley, RA, Francis, DH and O'Brien, AD (1995). Escherichia coli O157:H7 requires intimin to colonize the gnotobiotic pig intestine and to adhere to HEp-2 cells. Infection and Immunity 63: 37393744.CrossRefGoogle ScholarPubMed
McNally, A, Roe, AJ, Simpson, S, Thomson-Carter, FM, Hoey, DEE, Currie, C, Chakraborty, T, Smith, DGE and Gally, DL (2001). Differences in levels of secreted locus of enterocyte effacement proteins between human disease-associated and bovine Escherichia coli O157:H7. Infection and Immunity 69: 51075114.CrossRefGoogle Scholar
Mead, PS, Slutsker, L, Dietz, V, McCaig, LF, Bresee, JS, Shapiro, C, Griffin, PM and Tauxe, RV (1999). Food-related illness and death in the United States. Emerging Infectious Diseases 5: 607625.CrossRefGoogle ScholarPubMed
Mellies, JL, Elliott, SJ, Sperandio, V, Donneberg, MS and Kaper, JB (1999). The Per regulon of enteropathogenic Escherichia coli: identification of a regulatory cascade and a novel transcriptional activator, the locus of enterocyte effacement (LEE)-encoded regulator (Ler). Molecular Microbiology 33: 296306.CrossRefGoogle Scholar
Melton-Celsa, AR and O'Brien, AD (1998). Structure, biology and relative toxicity of Shiga toxin family members for cells and animals. In: Kaper, JB and O'Brien, AD, editors. Escherichia coli O157:H7 and Other Shiga Toxin-Producing E. coli Strains. Washington, DC: ASM Press, pp. 121128.Google Scholar
Menge, C, Wieler, LH, Schlapp, T and Baljer, G (1999). Shiga toxin 1 from Escherichia coli blocks activation and proliferation of bovine lymphocyte subpopulations in vitro. Infection and Immunity 67: 22092217.CrossRefGoogle ScholarPubMed
Moxley, RA (2003). Detection and diagnosis of Escherichia coli O157:H7 in food-producing animals. In: Torrence, ME and Isaacson, RE, editors. Microbial Food Safety in Animal Agriculture: Current Topics. Ames, Iowa: Iowa State University Press, pp. 143154.CrossRefGoogle Scholar
Moxley, RA and Francis, DH (1998). Overview of animal models. In: Kaper, JB and O'Brien, AD, editors. Escherichia coli O157:H7 and Other Shiga Toxin-Producing E. coli Strains. Washington, DC: ASM Press, pp. 249260.Google Scholar
Murinda, SE, Roberts, RF and Wilson, RA (1996). Evaluation of colicins for inhibitory activity against diarrheagenic Escherichia coli strains, including serotype O157:H7. Applied and Environmental Microbiology 62: 31963202.CrossRefGoogle ScholarPubMed
Nataro, JP and Kaper, JB (1998). Diarrheagenic Escherichia coli. Clinical Microbiology Reviews 11: 142201.CrossRefGoogle ScholarPubMed
Naylor, SW, Low, JC, Besser, TE, Mahajan, A, Gunn, GJ, Pearce, MC, McKendrick, IJ, Smith, DGE, Gally, DL (2003). Lymphoid follicle-dense mucosa at the terminal rectum is the principal site of colonization of enterohemorrhagic Escherichia coli O157:H7 in the bovine host. Infection and Immunity 71: 15051512.CrossRefGoogle ScholarPubMed
Nicholls, L, Grant, TH and Robins-Browne, RM (2000). Identification of a novel genetic locus that is required for in vitro adhesion of a clinical isolate of enterohaemorrhagic Escherichia coli to epithelial cells. Molecular Microbiology 35: 275288.CrossRefGoogle ScholarPubMed
Nou, X, Rivera-Betancourt, M, Bosilevac, JM, Wheeler, TL, Shackelford, SD, Gwartney, BL, Reagan, JO and Koohmaraie, M (2003). Effect of chemical dehairing on the prevalence of Escherichia coli O157:H7 and the levels of aerobic bacteria and Enterobacteriaceae on carcasses in a commercial beef processing plant. Journal of Food Protection 66: 20052009.CrossRefGoogle Scholar
O'Brien, AD and Holmes, RK (1987). Shiga and Shiga-like toxins. Microbiological Reviews 51: 206220.CrossRefGoogle ScholarPubMed
O'Brien, AD and Kaper, JB (1998). Shiga toxin-producing Escherichia coli: yesterday, today, and tomorrow. In: Kaper, JB and O'Brien, AD, editors. Escherichia coli O157:H7 and Other Shiga Toxin-Producing E. coli Strains. Washington, DC: ASM Press, pp. 111.Google Scholar
Ogawa, M, Shimizu, K, Nomoto, K, Takahashi, M, Watanuki, M, Tanaka, R, Tanaka, T, Hamabata, T, Yamasaki, S and Takeda, Y (2001). Protective effect of Lactobacillus casei strain Shirota on Shiga toxin-producing Escherichia coli O157:H7 infection in infant rabbits. Infection and Immunity 69: 11011108.CrossRefGoogle ScholarPubMed
Ogierman, MA, Paton, AW and Paton, JC (2000). Up-regulation of both intimin and eae -independent adherence of Shiga toxigenic Escherichia coli O157 by ler and phenotypic impact of a naturally occurring ler mutation. Infection and Immunity 68: 53445353.CrossRefGoogle ScholarPubMed
Oswald, E, Schmidt, H, Morabito, S, Karch, H, Marchès, and Caprioli, A (2000). Typing of intimin genes in human and animal enterohemorrhagic and enteropathogenic Escherichia coli: characterization of a new intimin variant. Infection and Immunity 68: 6471.CrossRefGoogle ScholarPubMed
Paton, JC and Paton, AW (1998). Pathogenesis and diagnosis of Shiga toxin-producing Escherichia coli infection. Clinical Microbiology Reviews 11: 450479.CrossRefGoogle Scholar
Paton, AW, Manning, PA, Woodrow, MC and Paton, JC (1998a). Translocated intimin receptors (Tir) of Shiga-toxigenic Escherichia coli isolates belonging to serogroups O26, O111, and O157 react with sera from patients with hemolytic–uremic syndrome and exhibit marked sequence heterogeneity. Infection and Immunity 66: 55805586.CrossRefGoogle Scholar
Paton, AW, Voss, E, Manning, PA and Paton, JC (1998b). Antibodies to lipopolysaccharide block adherence of Shiga toxin-producing Escherichia coli to human intestinal epithelial (Henle 407) cells. Microbial Pathogenesis 24: 5763.CrossRefGoogle ScholarPubMed
Paton, AW, Srimanote, P, Woodrow, MC and Paton, JC (2001). Characterization of Saa, a novel autoagglutinating adhesin produced by locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli strains that are virulent for humans. Infection and Immunity 69: 69997009.CrossRefGoogle Scholar
Pearson, GR, Bazeley, KJ, Jones, JR, Gunning, RF, Green, MJ, Cookson, A and Woodward, MJ (1999). Attaching and effacing lesions in the large intestine of an eight-month-old heifer associated with Escherichia coli O26 infection in a group of animals with dysentery. Veterinary Record 145: 370373.CrossRefGoogle Scholar
Perna, NT, Plunkett, G, Burland, V, Mau, B, Glasner, JD, Rose, DJ, Mayhew, GF, Evans, PS, Gregor, J, Kirkpatrick, HA, Posfai, G, Hackett, J, Klink, S, Boutin, A, Shao, Y, Miller, L, Grotbeck, EJ, Davis, NW, Lim, A, Dimalanta, ET, Potamousis, KD, Apodaca, J, Anantharaman, TS, Lin, J, Yen, G, Schwartz, DC, Welch, RA and Blattner, FR (2001). Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409: 529533.CrossRefGoogle ScholarPubMed
Phillips, AD and Frankel, G (2000). Intimin-mediated tissue specficity in enteropathogenic Escherichia coli interaction with human intestinal organ cultures. Journal of Infectious Diseases 181: 14961500.CrossRefGoogle Scholar
Phillips, AD, Navabpour, S, Hicks, S, Dougan, G, Wallis, T and Frankel, G (2000). Enterohaemorrhagic Escherichia coli O157:H7 target Peyer's patches in humans and cause attaching/effacing lesions in both human and bovine intestine. Gut 47: 377381.CrossRefGoogle ScholarPubMed
Pijpers, AHJM, van Setten, PA, van den Heuvel, LPWJ, Assmann, KJM, Dijkman, HBPM, Pennings, AHM, Monnens, LAH and Hinsberg, VWM (2001). Verocytotoxin-induced apoptosis of human microvascular endothelial cells. Journal of the American Society of Nephrology 12: 767778.CrossRefGoogle ScholarPubMed
Potter, AA, Klashinsky, S, Li, Y, Frey, E, Townsend, H, Rogan, D, Erickson, G, Hinkley, S, Klopfenstein, T, Moxley, RA, Smith, DR and Finlay, BB (2004). Decreased shedding of Escherichia coli O157:H7 by cattle following vaccination with type III secreted proteins. Vaccine 22: 362369.CrossRefGoogle ScholarPubMed
Price, SB, Cheng, CM, Kaspar, CW, Wright, JC, DeGraves, FJ, Penfound, TA, Castanie-Cornet, MP and Foster, JW (2000). Role of rpoS in acid resistance and fecal shedding of Escherichia coli O157:H7. Applied and Environmental Microbiology 66: 632637.CrossRefGoogle ScholarPubMed
Pruimboom-Brees, IM, Morgan, TW, Ackermann, MR, Nystrom, ED, Samuel, JE, Cornick, NA and Moon, HW (2000). Cattle lack vascular receptors for Escherichia coli O157:H7 Shiga toxins. Proceedings of the National Academy of Sciences of the United States of America 97: 1032510329.CrossRefGoogle ScholarPubMed
Ramachandran, V, Brett, K, Hornitzky, MA, Dowton, M, Bettelheim, KA, Walker, MJ and Djordjevic, SP (2003). Distribution of intimin subtypes among Escherichia coli isolates from ruminant and human sources. Journal of Clinical Microbiology 41: 50225032.CrossRefGoogle ScholarPubMed
Rice, DH, Sheng, HQ, Wynia, SA and Hovde, CJ (2003). Rectoanal mucosal swab culture is more sensitive than fecal culture and distinguishes Escherichia coli O157:H7-colonized cattle and those transiently shedding the same organism. Journal of Clinical Microbiology 43: 49244929.CrossRefGoogle Scholar
Richardson, SE, Rotman, TA, Jay, V, Smith, CR, Becker, LE, Petric, M, Olivieri, NF and Karmali, MA (1992). Experimental verocytotoxemia in rabbits. Infection and Immunity 60: 41544167.CrossRefGoogle ScholarPubMed
Ritchie, JM, Thorpe, CM, Rogers, AB and Waldor, MK (2003). Critical roles for stx 2, eae, and tir in enterohemorrhagic Escherichia coli-induced diarrhea and intestinal inflammation in infant rabbits. Infection and Immunity 71: 71297139.CrossRefGoogle ScholarPubMed
Roe, AJ, Hoey, DEE and Gally, DL (2003a). Regulation, secretion and activity of type III-secreted proteins of enterohaemorrhagic Escherichia coli O157. Biochemical Society Transactions 31: 98103.CrossRefGoogle ScholarPubMed
Roe, AJ, Yull, H, Naylor, SW, Woodward, MJ, Smith, DGE and Gally, DL (2003b). Heterogeneous surface expression of EspA translocon filaments by Escherichia coli O157:H7 is controlled at the posttranscriptional level. Infection and Immunity 71: 59005909.CrossRefGoogle ScholarPubMed
Rogers, TJ, Paton, AW, McColl, SR and Paton, JC (2003). Enhanced CXC chemokine responses of human colonic epithelial cells to locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli. Infection and Immunity 71: 56235632.CrossRefGoogle ScholarPubMed
Rosenshine, I, Ruschkowski, S and Finlay, BB (1996). Expression of attaching/effacing activity by enteropathogenic Escherichia coli depends on growth phase, temperature, and protein synthesis upon contact with epithelial cells. Infection and Immunity 64: 966973.CrossRefGoogle ScholarPubMed
Russell, JB, Diez-Gonzalez, F and Jarvis, GN (2000). Effects of diet shifts on Escherichia coli in cattle. Journal of Dairy Science 83: 863873.CrossRefGoogle ScholarPubMed
Sanderson,, MW, Gay, JM, Hancock, DD, Gay, CC, Fox, LK and Besser, TE (1995). Sensitivity of bacteriologic culture for detection of Escherichia coli O157:H7 in bovine feces. Journal of Clinical Microbiology 33: 26162619.CrossRefGoogle ScholarPubMed
Sanderson,, MW, Besser, TE, Gay, JM, Gay,, CC and Hancock, DD (1999). Fecal Escherichia coli O157:H7 shedding patterns of orally inoculated calves. Veterinary Microbiology 69: 199205.CrossRefGoogle ScholarPubMed
Sargeant, JM, Sanderson, MW, Smith, RA and Griffin, DD (2003). Escherichia coli O157 in feedlot cattle feces and water in four major feeder-cattle states in the USA. Preventive Veterinary Medicine 61: 127135.CrossRefGoogle ScholarPubMed
Schauder, S, Shokat, K, Surette, MG and Bassler, BL (2001). The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Molecular Microbiology 41: 463476.CrossRefGoogle ScholarPubMed
Scott, T, Wilson, C, Bailey, D, Klopfenstein, T, Milton, T, Moxley, R, Smith, D, Gray, J and Hungerford, L (2000). Influence of diet on total and acid-resistant E. coli and colonic pH. In: University of Nebraska Cooperative Extenion, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln (NE): 2000 Nebraska Beef Report, pp. 3941.Google Scholar
Shallow, S, Daily, P and Rothrock, G (1997). Foodborne diseases active surveillance network 1996. Morbidity Mortality Weekly Report 46: 258261.Google Scholar
Siegler, RL, Pysher, TJ, Tesh, VL and Taylor, FB Jr (2001). Response to single and divided doses of Shiga toxin-1 in a primate model of hemolytic uremic syndrome. Journal of the American Society of Nephrology 12: 14581467.CrossRefGoogle Scholar
Sinclair, JF and O'Brien, AD (2002). Cell surface-localized nucleolin is a eukaryotic receptor for the adhesin intimin-γ of enterohemorrhagic Escherichia coli O157:H7. Journal of Biological Chemistry 277: 28762885.CrossRefGoogle ScholarPubMed
Smith, DR, Blackford, M, Younts, S, Moxley, R, Gray, J, Hungerford, L, Milton, T and Klopfenstein, T (2001). Ecological relationships between the prevalence of cattle shedding Escherichia coli O157:H7 and characteristic of the cattle or conditions of the feedlot pen. Journal of Food Protection 64: 18991903.CrossRefGoogle ScholarPubMed
Smith, DR, Gray, JT, Moxley, RA, Younts-Dahl, SM, Blackford, MP, Hinkley, S, Hungerford, LL, Milton, CT and Klopfenstein, TJ (2004a). A diagnostic strategy to determine the Shiga toxin-producing Escherichia coli O157 status of pens of feedlot cattle. Epidemiology and Infection 132: 297302.CrossRefGoogle ScholarPubMed
Smith, DR, Peterson, RE, Klopfenstein, TJ, Erickson, GE, Moxley, RA and Hinkley, S (2004b). Feeding direct-fed microbials to reduce the prevalence of Escherichia coliGoogle Scholar
Smith, WE, Kane, AV, Campbell, ST, Acheson, DWK, Cochran, BH and Thorpe, CM (2003). Shiga toxin 1 triggers a ribotoxic stress response leading to p38 and JNK activation and induction of apoptosis in intestinal epithelial cells. Infection and Immunity 71: 14971504.CrossRefGoogle ScholarPubMed
Sperandio, V, Mellies, JL, Nguyen, W, Shin, S and Kaper, JB (1999). Quorum sensing controls expression of the type III secretion gene transcription and protein secretion in enterohemorrhagic and enteropathogenic Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 96: 1519615201.CrossRefGoogle ScholarPubMed
Sperandio, V, Mellies, JL, Delahay, RM, Frankel, G, Crawford, JA, Nguyen, W and Kaper, JB (2000). Activation of enteropathogenic Escherichia coli (EPEC) LEE2 and LEE3 operons by Ler. Molecular Microbiology 38: 781793.CrossRefGoogle ScholarPubMed
Sperandio, V, Torres, AG, and Girón Kaper, JB (2001). Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli O157:H7. Journal of Bacteriology 183: 51875197.CrossRefGoogle ScholarPubMed
Sperandio, V, Li, CC and Kaper, JB (2002a). Quorum-sensing Escherichia coli regulator A: a regulator of the LysR family involved in the regulation of the locus of enterocyte effacement pathogenicity island in enterohemorrhagic E. coli. Infection and Immunity 70: 30853093.CrossRefGoogle ScholarPubMed
Sperandio, V, Torres, AG and Kaper, JB (2002b). Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Molecular Microbiology 43: 809821.CrossRefGoogle Scholar
Sperandio, V, Torres, AG, Jarvis, B, Nataro, JP and Kaper, JB (2003). Bacteria-host communication: the language of hormones. Proceedings of the National Academy of Sciences of the United States of America 100: 89518956.CrossRefGoogle ScholarPubMed
Stevens, MP, Marchès, O, Campbell, J, Huter, V, Frankel, G, Phillips, AD, Oswald, E and Wallis, TS (2002a). Intimin, Tir and Shiga toxin 1 do not influence enteropathogenic response to Shiga toxin-producing Escherichia coli in bovine ligated intestinal loops. Infection and Immunity 70: 945952.CrossRefGoogle Scholar
Stevens, MP, van Diemen, PM, Dziva, F, Jones, PW and Wallis, TS (2002b). Options for the control of enterohaemorrhagic Escherichia coli in ruminants. Microbiology 148: 37673778.CrossRefGoogle ScholarPubMed
Stevens, MP, vanDiemen, PM, Frankel, G, Phillips, AD and Wallis, TS (2002c). Efa1 influences colonization of the bovine intestine by Shiga toxin-producing Escherichia coli serotypes O5 and O111. Infection and Immunity 70: 51585166.CrossRefGoogle ScholarPubMed
Surette, MG, Miller, MB and Bassler, BL (1999). Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proceedings of the National Academy of Sciences of the United States of America 96: 16391644.CrossRefGoogle ScholarPubMed
Tarr, PI, Bilge, SS, Vary, JC Jr, Jelacic, S, Habeeb, RL, Ward, TR, Baylor, MR and Besser, TE (2000). Iha: a novel Escherichia coli O157:H7 adherence-conferring molecule encoded on a recently acquired chromosomal island of conserved structure. Infection and Immunity 68: 14001407.CrossRefGoogle Scholar
Tatsuno, I, Kimura, H, Okutani, A, Kanamaru, K, Abe, H, Nagai, S, Makino, K, Shinagawa, H, Yoshida, M, Sato, K, Nakamoto, J, Tobe, T and Sasakawa, C (2000). Isolation and characterization of mini-TnKm2 insertion mutants of enterohemorrhagic Escherichia coli O157:H7 deficient in adherence to Caco-2 cells. Infection and Immunity 68: 59435952.CrossRefGoogle ScholarPubMed
Tatsuno, I, Horie, M, Abe, H, Miki, T, Makino, K, Shinagawa, H, Taguchi, H, Kamiya, S, Hayashi, T and Sasakawa, C (2001). toxB gene on pO157 of enterohemorrhagic Escherichia coli O157:H7 is required for full epithelial cell adherence phenotype. Infection and Immunity 69: 66606669.CrossRefGoogle ScholarPubMed
Tesh, VL, Burris, JA, Owens, JW, Gordon, VM, Wadolkowski, EA, O'Brien, AD and Samuel, JE (1993). Comparison of the relative toxicities of Shiga-like toxins type I and type II for mice. Infection and Immunity 61: 33923402.CrossRefGoogle ScholarPubMed
Tkalcic, S, Brown, CA, Harmon, BG, Jain, AV, Mueller, EP, Parks, A, Jacobsen, KL, Martin, SA, Zhao, T and Doyle, MP (2000). Effects of diet on rumen proliferation and fecal shedding of Escherichia coli O157:H7 in calves. Journal of Food Protection 63: 16301636.CrossRefGoogle ScholarPubMed
Thorpe, CM, Hurley, BP, Lincicome, LL, Jacewicz, MS, Keusch, GT and Acheson, DWK (1999). Shiga toxins stimulate secretion of interleukin-8 from intestinal epithelial cells. Infection and Immunity 67: 59855993.CrossRefGoogle ScholarPubMed
Thorpe, CM, Smith, WE, Hurley, BP and Acheson, DWK (2001). Shiga toxins induce, superinduce and stabilize a variety of C-X-C chemokine mRNAs in intestinal epithelial cells, resulting in increased chemokine expression. Infection and Immunity 69: 61406147.CrossRefGoogle ScholarPubMed
Torres, AG and Kaper, JB (2003). Multiple elements controlling adherence of enterohemorrhagic Escherichia coli O157:H7 to HeLa cells. Infection and Immunity 71: 49854995.CrossRefGoogle ScholarPubMed
Tuttle, J, Gomez, T, Doyle, MP, Wells, JG, Zhao, T, Tauxe, RV and Griffin, PM (1999). Lessons from a large outbreak of Escherichia coli O157:H7 infections: insights into the infectious dose and method of widespread contamination of hamburger patties. Epidemiology and Infection 122: 185192.CrossRefGoogle ScholarPubMed
Tzipori, S, Gunzer, F, Donnenberg, MS, de Montigny, L, Kaper, JB and Donohue-Rolfe, A (1995). The role of the eaeA gene in diarrhea and neurological complications in a gnotobiotic piglet model of enterohemorrhagic Escherichia coli infection. Infection and Immunity 63: 36213627.CrossRefGoogle Scholar
Vallance, BA and Finlay, BB (2000). Exploitation of host cells by enteropathogenic Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 97: 87998806.CrossRefGoogle ScholarPubMed
van de Kar, NC, Monnens, LAH, Karmali, MA and van Hinsbergh, VWM (1992). Tumor necrosis factor and interleukin-1 induce expression of the verocytotoxin receptor globotriaosylceramide on human endothelial cells: implications for the pathogenesis of the hemolytic uremic syndrome. Blood 80: 27552764.CrossRefGoogle ScholarPubMed
van Setten, PA, van Hinsbergh, VWM, van der Velden, TJ, van de Kar, NC, Vermeer, M, Mahan, JD, Assmann, KJ, van den Heuvel, LPWJ and Monnens, LAH (1997). Effects of TNF alpha on verocytotoxin cytotoxicity in purified human glomerular microvascular endothelial cells. Kidney International 51: 12451256.CrossRefGoogle ScholarPubMed
Weiler, LH, Vieler, E, Erpenstein, C, Schlapp, T, Steinrück, , Bauerfeind, R, Byomi, A and Baljer, G (1996). Shiga toxin-producing Escherichia coli strains from bovines: association of adhesion with carriage of eae and other genes. Journal of Clinical Microbiology 34: 29802984.CrossRefGoogle Scholar
Woods, JB, Schmitt, CK, Darnell, SC, Meysick, KC and O'Brien, AD (2002). Ferrets as a model system for renal disease secondary to intestinal infection with Escherichia coli O157:H7 and other Shiga toxin-producing E. coli. Journal of Infectious Diseases 185: 550554.CrossRefGoogle Scholar
Wray, C, McLaren, IM, Randall, LP and Pearson, GR (2000). Natural and experimental infection of normal cattle with Escherichia coli O157. Veterinary Record 147: 6568.CrossRefGoogle ScholarPubMed
Zhang, WL, Köhler, , Oswald, E, Beutin, L, Karch, H, Morabito, S, Caprioli, A, Suerbaum, S and Schmidt, H (2002). Genetic diversity of intimin genes of attaching and effacing Escherichia coli strains. Journal of Clinical Microbiology 40: 44864492.CrossRefGoogle ScholarPubMed