Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T07:30:27.784Z Has data issue: false hasContentIssue false

Population structure and genealogical analysis of the Brazilian Crioula Horse

Published online by Cambridge University Press:  03 April 2014

F.C. Maciel
Affiliation:
Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
C.D. Bertoli
Affiliation:
Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
J. Braccini Neto
Affiliation:
Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
J.A. Cobuci
Affiliation:
Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
S.R. Paiva
Affiliation:
EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF 70770-970, Brazil
C.M. McManus*
Affiliation:
Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil Universidade de Brasília, Brasília, DF 70910-900, Brazil
*
Correspondence to: C.M. McManus, Universidade de Brasília, Brasília, DF 70910-900, Brazil. email: [email protected]
Get access

Summary

A genealogical analysis of Crioula horses registered by the Brazilian Association of Crioula Horse Breeders was performed. The state of Rio Grande do Sul is the largest producer of animals with 89.85 percent of registered animals, of which 45.29 percent were males and 54.71 percent females. The inbreeding coefficient was calculated at 0.88 percent and the average relatedness was 0.65 percent in the total population (animals born in Brazil and imported). Inbreeding increased over the generations. An increase was seen in the average genetic conservation index in animals born after the year 1927 (0) until 2010 (8.67 percent). The average generation interval was 10.3 years and the average age of parents when offspring born were 10.5 years, falling in recent years. The effective population size of founders was 95.19 animals, the number of ancestors contributing to this population was 5086 where 56 ancestors explained 50 percent of the genetic diversity of the breed. Inbreeding is under control in the Crioula horse. The increase in registrations reflects the increased interest from farmers in this breed.

Résumé

Une analyse généalogique des chevaux Créoles inscrits à l'Association Brésilienne d'Éleveurs de Chevaux Créoles a été réalisée. L'état du Rio Grande do Sul est le plus grand producteur d'animaux avec 89,85 pour cent des animaux inscrits, dont le 45,29 pour cent sont mâles et le 54,71 pour cent femelles. Le coefficient de consanguinité a été estimé à 0,88 pour cent, avec une parenté moyenne de 0,65 pour cent dans la population totale, y compris les animaux nés au Brésil et ceux importés. La consanguinité a augmenté au fil des générations. Un accroissement de l'indice moyen de conservation génétique a été observé pour les animaux nés entre 1927 (0) et 2010 (8,67 pour cent). L'intervalle générationnel moyen a été de 10,3 ans et l'âge auquel les parents ont en moyenne leur premier descendant a été de 10,5 ans, cet âge ayant diminué au cours des dernières années. La taille effective de la population des fondateurs a été de 95,19 animaux. Le nombre d'ancêtres ayant contribué à cette population a été de 5086, dont 56 sont responsables du 50 pour cent de la diversité génétique de la race. La consanguinité est sous contrôle dans la race équine Créole au Brésil. L'augmentation des inscriptions reflète l'intérêt croissant des éleveurs pour cette race.

Resumen

Se realizó un análisis genealógico de los caballos Criollos registrados en la Asociación Brasileña de Criadores de Caballo Criollo. El estado de Río Grande del Sur es el mayor productor de animales con el 89,85 por ciento de los animales registrados, de los cuales el 45,29 por ciento son machos y el 54,71 por ciento hembras. El coeficiente de endogamia se estimó en un 0,88 por ciento, con un parentesco medio de 0,65 por ciento en la población total, contando tanto con animales nacidos en Brasil como con animales importados. La endogamia aumentó de generación en generación. Se detectó un incremento en el índice medio de conservación genética en los animales nacidos entre 1927 (0) y 2010 (8,67 por ciento). El intervalo generacional medio fue de 10,3 años y la edad media de los progenitores al nacimiento del primer descendiente fue de 10,5 años, habiéndose reducido esta edad en los últimos años. El tamaño efectivo de la población de fundadores fue de 95,19 animales. El número de ancestros que han contribuido a esta población fue de 5086, de los cuales 56 eran responsables del 50 por ciento de la diversidad genética de la raza. La endogamia está bajo control en la raza equina Criolla en Brasil. El aumento de registros refleja el interés creciente de los ganaderos por esta raza.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahão, A.R., Mota, M.D.S., Oliveira, H.N. & Madureira, A.P. 2002. Endogamia em éguas da raça Puro-Sangue Inglês. In Proceedings IV Simpósio da Sociedade Brasileira de Melhoramento Animal, Campo Grande, Brazil, pp. 224–225.Google Scholar
Alderson, G.L.H. 1991. A system to maximize the maintenance of genetic variability in small populations. In Alderson, L., ed. Genetic conservation of domestic livestock, pp. 1829. Wallingford, UK, CAB International.Google Scholar
Ballou, J.D. & Lacy, R.C. 1995. Identifying genetically important individuals for management of genetic diversity in pedigreed populations. In: Ballou, J.D., Gilpin, M. & Foose, T.J. (Eds) Population management for survival & recovery. Analytical methods and strategies in small population conservation. New York: Columbia University Press, p.76111.Google Scholar
Boichard, D., Maignel, L. & Verrier, É. 1997. The value of using probabilities of gene origin to measure genetic variability in a population. Genet. Sel. Evol., 29: 523.Google Scholar
Caballero, A. & Toro, M.A. 2000. Interrelations between effective population size and other pedigree tools for the management of conserved populations. Genet. Res., 75: 331343.Google Scholar
Caballero, A. & Toro, M.A. 2002. Analysis of genetic diversity for the management of conserved subdivided populations. Conserv. Genet., 3: 289292.Google Scholar
Cervantes, I., Molina, A., Goyache, F., Gutiérrez, J. P. & Valera, M. 2008. Population history and genetic variability in the Spanish Arab Horse assessed via pedigree analysis. Livestock Sci., 113: 2433.Google Scholar
Chiofalo, L., Portolano, B., Liottal, L., Rundo Soteral, A. & Finocchiaro, R. 2003. Demographic characterization, inbreeding and genetic variability within Sanfratellano population horse from genealogical data. Ital. J. Anim. Sci., 2(Suppl. 1): 592594.Google Scholar
Coelho, E.G.A. & Oliveira, D.A.A. 2008. Testes genéticos na eqüideocultura. Revista Brasileira de Zootecnia, 37: 202205. Special Number.Google Scholar
Costa, M.D. 2002. Caracterização demográfica e estrutura genética da raça Mangalarga Marchador. Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (Thesis).Google Scholar
Costa, M.D., Bergmann, J.A.G., Resende, A.S.C. & Fonseca, C.G. 2005. Análise temporal da endogamia e do tamanho efetivo da população de equinos da raça Mangalarga Marchador. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 57: 112119.CrossRefGoogle Scholar
Cothran, E.G., Santos, S.A., Mazza, M.C.M., Lear, T.L. & Sereno, J.R.B. 1998. Genetics of the Pantaneiro horse of the Pantanal region of Brazil. Genet. Mol. Biol. (available at http://dx.doi.org/10.1590/S1415-47571998000300009).Google Scholar
Escola Superior de Agricultura Luiz de Queiroz – ESALQ. Centro de Estudos Avançados em Economia Aplicada da ESALQ. 2006. Estudo do Complexo do Agronegócio do Cavalo no Brasil. Brasília, CAN, MAPA.Google Scholar
Falconer, D.S. & Mackay, T.F.C. 1996. Introduction to Quantitative Genetics. Harlow, Longman.Google Scholar
Faria, F.J.C., Vercesi Filho, A.E., Madalena, F.E. & Josahkian, L.A. 2002. Estrutura populacional da raça Nelore Mocho. Arquivos Brasileiro de Medicina Veterinária e Zootecnia, 54: 501509.Google Scholar
Fletcher, J.L. 1945. A genetic analysis of the American Quarter Horse. J. Hered., 36: 346352.Google Scholar
Fletcher, J.L. 1946. A study of the first fifty years of Tennessee Walking horse breeding. J. Hered., 37: 369373.Google Scholar
Gazder, P.J. 1954. The genetic history of the Arabian Horse. J. Hered., 45: 9598.Google Scholar
Gonçalves, R.W. 2010. Efeito da endogamia nas características morfométricas e reprodutivas dos eqüinos da raça Mangalarga Marchador. Universidade Estadual de Montes Claros, Montes Claros, Brazil. (Dissertation) (available at http://www.dominiopublico.gov.br/pesquisa/DetalheObraForm.do?select_action=&co_obra=193645).Google Scholar
Goyache, F., Gutiérrez, J.P., Fernández, I., Gomez, E., Alvarez, I., Díez, J. & Royo, L.J. 2003. Using pedigree information to monitor genetic variability of endangered populations: the Xalda sheep breed of Asturias as an example. J. Anim. Breed. Genet., 120: 95105.Google Scholar
Gutiérrez, J.P., Marmi, J., Goyache, F. & Jordana, J. 2005. Pedigree information reveals moderate to high levels of inbreeding and a weak population structure in the endangered Catalonian donkey breed. J. Anim. Breed. Genet., 122: 378386.Google Scholar
Gutiérrez, J.P., Goyache, F. & Cervantes, I. 2009. Useŕs Guide, ENDOG v4.6, A Computer Program for Monitoring Genetic Variability of Populations Using Pedigree Information, (available at http://www.ucm.es/info/prodanim/html/JP_Web_archivos/EN_Us_G_.pdf).Google Scholar
Hammami, H., Croquet, C., Stoll, J., Rekik, B. & Gengler, N. 2007. Genetic diversity and joint-pedigree analysis of two importing Holstein populations. J. Dairy Sci., 90: 35303541.Google Scholar
James, J.W. 1977. A note on selection differentials and generation length when generations overlap. Anim. Prod., 24: 109112.Google Scholar
Kelly, L., Postiglioni, A., De Andrés, D.F., Vega-Plá, J.L., Gagliardi, R., Biagetti, R. & Franco, J. 2002. Genetic characterisation of the Uruguayan Crioula horse and analysis of relationships among horse breeds. Res. Vet. Sci., 72(1): 6973.Google Scholar
Laat, D.M. 2001. Contribuição genética de fundadores e ancestrais na raça Campolina. Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. (Dissertation) (available at http://www.ebookcult.com.br/produto/Contribuicao_genetica_de_fundadores_e_ancestrais_na_raca_campolina-10151).Google Scholar
Lacy, R.C. 1989. Analysis of founder representation in pedigrees: founder equivalents and founder genome equivalents. Zoo Biol., 8: 111123.Google Scholar
Luís, C., Cothran, E.G., Oom, M.M. & Bailey, E. 2005. Major histocompatibility complex locus DRA polymorphism in the endangered Sorraia horse and related breeds. J. Anim. Breed. Genet., 122: 6972.Google Scholar
Lynch, M. & Walsh, J.B. 1998. Genetics and analysis of quantitative traits. Sunderland: Sinauer Assocs. Inc., 980p.Google Scholar
Maccluer, J.W., Boyce, A.J., Dyke, B., Weitkamp, L.R., Pfenning, D.W. & Parsons, C.J. 1983. Inbreeding and pedigree structure in Standardbred. J. Hered., 74: 394399.Google Scholar
Malécot, G. 1948. Les Mathématiques de l'Hérédité. Masson et Cie, ParisGoogle Scholar
Martínez, R.A., García, D., Gallego, J.L. 2008. Genetic variability in Colombian Crioula cattle populations estimated by pedigree information. J. Anim. Sci., 86: 545552.Google Scholar
McManus, C. 2013. Evaluation of Conservation Program for the Pantaneiro Horse in Brazil, Revista Brasileira de Zootecnia, in press.Google Scholar
McManus, C., Santos, S.A., Dallago, B.S.L., Paiva, S.R., Saraiva, R.F., Braccini Neto, J., Marques, P.R. & Abreu, U.G. 2013. Evaluation of conservation program for the Pantaneiro horse in Brazil. Rev. Bras. Zoot. 42:404413.Google Scholar
Mirol, P.M., Peral García, P., Vega-Pla, J.L. & Dulout, F.N. 2002. Phylogenetic relationships of Argentinean Crioula horses and other South American and Spanish breeds inferred from mitochondrial DNA sequences. Anim. Genet., 33: 356363.Google Scholar
Mota, M.D.S., Prado, R.S.A. & Sobreiro, J. 2006. Characterization of the Mangalarga horse population in Brazil. Arch. Zoot., 55:3137.Google Scholar
Moureaux, S., Verrier, É., Ricard, A. & Mériaux, J.C. 1996. Genetic variability within French race and riding horse breeds from genealogical data and blood marker polymorphisms. Genet. Sel. Evol. 28:83102.CrossRefGoogle Scholar
Nicholas, F.W. 1989. Incorporation of new reproductive technology in genetic improvement programs. In: Hill, W.G., Mackay, T.F.C. (Eds) Evolution and animal breeding. Wallingford: CAB International, p.201209.Google Scholar
Pereira, M.C., Mercadante, M.E.Z., Albuquerque, L.G. & Razook, A.G. 2005. Estimativa de ganho genético a partir de diferenciais de seleção e parâmetros populacionais em um rebanho Caracu. Revista Brasileira de Zootecnia, 34: 22452252.CrossRefGoogle Scholar
Procópio, A.M., Bergmann, J.A.G., Costa, M.D. 2003. Formação e demografia da raça Campolina. Arq. Bras. Med.Vet. Zoot. 55:361365.Google Scholar
Rhoad, A.O. & Kleberg, J.R. 1946. The developments of a superior family in the modern Quarter Horse. J. Hered., 37: 227238.Google Scholar
Rodero, A., Delgado, J.V. & Rodero, E. 1992. Primitive Andalusian livestock and their implication in the Discovery of America. Arch. Zootec., 41: 383400.Google Scholar
Schurink, A., Arts, D.J.G. & Ducro, B.J. 2012. Genetic diversity in the Dutch harness horse population using pedigree analysis. Livestock Sci., 143: 270277.CrossRefGoogle Scholar
Toro, M.A., Rodrigañez, J., Silio, L. & Rodriguez, C. 2000. Genealogical analysis of a closed herd of Black Hairless Iberian pigs. Conserv. Biol., 14: 18431851.Google Scholar
Valera, M., Molina, A., Gutiérrez, J.P., Gómez, J. & Goyache, F. 2005. Pedigree analysis in the Andalusian horse: population structure, genetic variability and influence of the Carthusian strain. Livestock Prod. Sci., 95: 5766.Google Scholar
Vercesi Filho, A.E., Faria, F.J.C., Madalena, F.E. & Josahkian, L.A. 2002. Estrutura populacional do rebanho Tabapuã registrado no Brasil. Arquivos Brasileiro de Medicina Veterinária e Zootecnia, 54: 609617.Google Scholar
Vicente, A., Carolino, N. & Gama, L.T. 2009. Indicadores Demográficos no Cavalo Lusitano. Arch. Zootec., 58(Supl. 1): 501504.Google Scholar
Vinocur, M.E., Brass, K.E., Rubin, M.I.B. & Silva, C.A.M. 2003. Genetic variability in the Brazilian Crioula horse breed. Cienc. Rural, 33: 137142.CrossRefGoogle Scholar
Vozzi, P.A., Marcondes, C.R., Magnabosco, C.U., Bezerra, L.A.F. & Lôbo, R.B. 2006. Structure and genetic variability in Nellore (Bos indicus) cattle by pedigree analysis. Genet. Mol. Biol., 29: 482485.CrossRefGoogle Scholar
Vozzi, P.A., Marcondes, C.R., Bezerra, L.A.F. & Lôbo, R.B. 2007. Pedigree analyses in the Breeding Program for Nellore Cattle. Genet. Mol. Res., 6: 10441050.Google Scholar
Welsh, C.S., Stewart, T.S. & Schwab, C. 2010. Pedigree analysis for 5 swine breeds in the United States and the implications for genetic conservation. J. Anim. Sci., 88:16101618.Google Scholar
Winter, G.H.Z. 2007. Características reprodutivas sazonais da égua Crioula em um propriedade latitude 29°38′S no Rio Grande do Sul. Universidade Federal de Santa Maria, Brazil. (Dissertation) (available at http://www.openthesis.org/documents/Reprodutivas-sazonais-da-crioula-em-473051.html).Google Scholar
Wolc, A., Balińska, K. 2010. Inbreeding effects on exterior traits in Polish konik horses. Arch. Anim. Breed., 53: 18.Google Scholar
Zechner, P., Sölkner, J., Bodo, I., Druml, T., Baumung, R., Achmann, R., Marti, E. Habe, F. & Brem, G. 2002. Analysis of diversity and population structure in the Lipizzan horse breed based on pedigree information. Livestock Prod. Sci., 77: 137146.Google Scholar