Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T11:40:13.418Z Has data issue: false hasContentIssue false

Assessment of genetic diversity of Mithun (Bos frontalis) population in Bhutan using microsatellite DNA markers

Published online by Cambridge University Press:  03 January 2017

Sangay Tenzin
Affiliation:
National Centre for Animal Health, Serbithang, Thimphu, Bhutan
Jigme Dorji*
Affiliation:
National Biodiversity Centre, Ministry of Agriculture and Forests, Serbithang, Thimphu, Bhutan
Tashi Dorji
Affiliation:
Dairy Development Division, Department of Livestock, Ministry of Agriculture and Forests, Thimphu, Bhutan
Yoshi Kawamoto
Affiliation:
Genome Diversity Section, Primate Research Institute, Kyoto University, Aichi, Japan
*
Correspondence to: Jigme Dorji, National Biodiversity Centre, Serbithang, Thimphu, Bhutan. email: [email protected]
Get access

Summary

Genetic diversity of Mithun population in Bhutan was studied using 14 microsatellite markers. Two sets of two-step polymerase chain reactions were performed with multiplex and individual markers for genotyping 105 hair samples collected from Arong in Samdrupjongkhar (AS, 36) and Wangdigang in Zhemgang (WZ, 69). Fifty-three alleles were detected with average of 3.89 alleles and polymorphism information content of 0.44 ± 0.03 per locus. A low level of genetic variability within population was present with observed heterozygosity at 0.50 ± 0.06 and expected heterozygosity at 0.48 ± 0.06. Analysis of molecular variance attributed 58 percent of total variation to within the individuals. Mean F IS and F IT were −0.056 and 0.005 respectively, indicated low level of population differentiation and limited out-breeding. The normal L-shaped distribution of allelic frequencies without any mode-shift revealed the absence of recent genetic bottleneck in Mithun populations. Therefore to manage inbreeding in the small Mithun population of Bhutan, periodic assessment of inbreeding levels and exchange of animals between farms is recommended to reduce frequency of introduction of animals from India.

Résumé

La diversité génétique de la population de gayals au Bhoutan a été étudiée en utilisant 14 marqueurs microsatellites. Deux séries de réactions en chaîne par polymérase (PCR selon ses sigles en anglais) en deux étapes ont été réalisées avec plusieurs marqueurs et avec des marqueurs individuels pour génotyper 105 échantillons de poils prélevés à Arong au Samdrup Jongkhar (AS, 36) et à Wangdigang au Zhemgang (WZ, 69). Cinquante-trois allèles ont été détectés pour une moyenne de 3.89 allèles et un contenu d'information sur le polymorphisme de 0.44 ± 0.03 par locus. Un faible niveau de variabilité génétique a été observé au sein de la population avec une hétérozygotie observée de 0.50 ± 0.06 et une hétérozygotie attendue de 0.48 ± 0.06. L'analyse de variance moléculaire (AMOVA) a attribué le 58 pour cent de la variation totale à la variabilité intra-individuelle. Les valeurs moyennes des coefficients F ST, F IS et F IT ont été de 0.054, −0.056 et 0.005 respectivement, ce qui est le reflet d'un faible niveau de différenciation dans la population et d'un manque de croisements exogames. La distribution habituelle des fréquences alléliques en L, sans aucune distorsion, a décelé l'absence de goulots d'étranglement génétique récents dans les populations de gayals. Ainsi, afin de gérer la consanguinité dans la petite population de gayals du Bhoutan, une évaluation périodique des niveaux de consanguinité et un échange d'animaux entre les fermes sont conseillés pour réduire la fréquence des importations depuis l'Inde.

Resumen

Se estudió la diversidad genética de la población de gayales en Bhután, utilizando para ello 14 marcadores microsatélites. Se llevaron a cabo dos tandas de reacciones en cadena de la polimerasa (PCR, por sus siglas en inglés) de dos pasos con múltiples marcadores y con marcadores individuales para genotipificar 105 muestras de pelo tomadas de Arong en Samdrupjongkhar (AS, 36) y de Wangdigang en Zhemgang (WZ, 69). Se detectaron 53 alelos, con una media de 3.89 alelos y un contenido de información polimórfica de 0.44 ± 0.03 por locus. Se constató un bajo nivel de variabilidad genética dentro de la población, con una heterocigosis observada de 0.50 ± 0.06 y una heterocigosis esperada de 0.48 ± 0.06. El análisis de varianza molecular (AMOVA) atribuyó el 58 por ciento de la variación total a la variabilidad intraindividual. Los valores medios para los coeficientes F ST, F IS y F IT fueron de 0.054, −0.056 y 0.005, respectivamente, lo cual refleja un bajo nivel de diferenciación en la población y una escasez de cruzamientos exogámicos. La distribución típica en forma de L de las frecuencias alélicas, sin ninguna distorsión, puso de manifiesto la ausencia de cuellos de botella genéticos recientes en las poblaciones de gayales. Por tanto, para gestionar la endogamia en la pequeña población de gayales de Bhután, se recomienda una evaluación periódica de los niveles de consanguinidad y el intercambio de animales entre las granjas con el fin de recudir la frecuencia de las importaciones desde la India.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arandjelovic, M., Guschanski, K., Schubert, G., Harris, T.R., Thalmann, O., Siedel, H. & Vigilant, L. 2009. Two-step multiplex polymerase chain reaction improves the speed and accuracy of genotyping using DNA from noninvasive and museum samples. Mol. Ecol. Resour., 9: 2836.Google Scholar
Barker, J.S.F. 1994. A global protocol for determining genetic distances among domestic livestock breeds. In Proceedings of the 5th World Congress on Genetics Applied to Livestock Production, Guelph and Ontario, Canada, vol. 2, pp. 501508.Google Scholar
Bhusan, S., Sharma, D. & Rajkhowa, C. 2009. Estimation of genetic divergence among four strains of mithun. Indian Vet. J., 86(7): 749751.Google Scholar
Bolstein, D., White, R. L, Skolnick, M. & Davis, R.W. 1980. Construction of genetic linkage map using microsatellite markers information. Kor. J. Genet., 29(3): 297306.Google Scholar
Del Bo, L., Polli, M., Longeri, M., Ceriotti, G., Looft, C., Barre-Dirie, A. & Zanotti, M. 2001. Genetic diversity among some cattle breeds in the Alpine area. J. Anim. Breed. Genet., 118(5): 317325.CrossRefGoogle Scholar
Department of Livestock (DoL). 2006. Livestock statistics. Bhutan, Department of Livestock, Ministry of Agriculture (available at http://www.apfanews.com/media/livestock-statistics-2006.pdf).Google Scholar
Department of Livestock (DoL). 2013. Livestock statistics. Bhutan, Department of Livestock, Ministry of Agriculture and Forest (available at http://www.moaf.gov.bt/download/Statisitcs/Livestock%20statistics%202013.pdf).Google Scholar
Dorji, T., Mannen, H., Namikawa, T., Inamura, T. & Kawamoto, Y. 2010. Diversity and phylogeny of mitochondrial DNA isolated from mithun Bos frontalis located in Bhutan. Anim. Genet., 41(5): 554556.Google Scholar
Earl, D.A. & vonHoldt, B.M. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Res., 4(2): 359361.Google Scholar
Excoffier, L., Smouse, P.E. & Quattro, J.M. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131(2): 479491.Google Scholar
Jackobsson, M. & Rosenberg, N.A. 2007. CLUMPP: a cluster matching and permutation program for dealing with the label switching and multimodality in analysis of population structure. Bioinformatics, 23(14): 18011806.Google Scholar
Evanno, G., Regnaut, S. & Goudet, J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecology, 14: 2622–2620.CrossRefGoogle ScholarPubMed
Kalinowski, S.T., Taper, M.L. & Marshall, T.C. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol., 16: 10991106.Google Scholar
Luikart, G., Allendorf, F.W., Cornuet, J.M. & Sherwin, W.B. 1998. Distortion of allele frequency distributions provides a test for recent population bottlenecks. J. Hered., 89(3): 238247.CrossRefGoogle ScholarPubMed
Mondal, S.K. & Pal, D.T. 1999. Mithun: historical perspective. Asian Agri-Hist., 3: 245260.Google Scholar
Mukesh, M., Sodhi, M., Bhatia, S. & Mishra, B.P. 2004. Genetic diversity of Indian native cattle breeds as analyzed with 20 microsatellites. J. Anim. Breed. Genet., 121: 416424.Google Scholar
Nei, M. 1987. Molecular evolutionary genetics. New York, Colombia University Press.CrossRefGoogle Scholar
Peakall, R. & Smouse, P.E. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes, 6: 288295.CrossRefGoogle Scholar
Peakall, R. & Smouse, P.E. 2012. GenAlEx 6.5: genetic analysis in Excel.Population genetic software for teaching and research-an update. Bioinformatics, 28(19): 25372539.Google Scholar
Piry, S., Luikart, G. & Cornuet, J.M. 1999. BOTTLENECK: a computer program for detecting recent reductions in effective population size using allele frequency data. J. Hered., 90: 502503.Google Scholar
Pritchard, J.K., Stephen, M. & Donnelly, P. 2000. Inference of population structure using multilocus genotype data. Genetics, 155: 945959.Google Scholar
Qu, K.X., Nguyen, S.N., He, Z.X., Huang, B.Z., Yuan, X.P., Zhang, Y.P. & Zan, L.S. 2012. Genetic diversity and bottleneck analysis of Yunnan mithun (Bos frontalis) using microsatellite loci. African J. Biotechnol., 11(12): 29122919.Google Scholar
Rosenberg, N.A. 2004. DISTRUCT: a program for the graphical display of population structure. Molecular ecology Note, 4: 137138.Google Scholar
Royal Government of Bhutan (RGoB). 2002. Country Report on the State of Animal Genetic Resources in Bhutan (available at ftp://ftp.fao.org/docrep/fao/010/a1250e/annexes/CountryReports/Bhutan.pdf).Google Scholar
Schmid, B.M., Saitbekova, N., Gaillard, C. & Dolf, G. 1999. Genetic diversity in Swiss cattle breeds. J. Anim. Breed. Genet., 116(1): 18.CrossRefGoogle Scholar
Simoons, F.J. 1984. Gayal or Mithun. In Evolution of domesticated animals, Manson, I. L (ed). London, Longman Press: 34–36.Google Scholar
Tanaka, K., Takizawa, T., Murakoshi, H., Dorji, T., Nyunt, M.M., Maeda, Y, Yamamoto, Y. & Namikawa, T. 2011. Molecular phylogeny and diversity of Myanmar and Bhutan mithun based on mtDNA sequences. Anim. Sci. J., 82(1): 5256.Google Scholar