Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T15:35:14.380Z Has data issue: false hasContentIssue false

MULTIDIRECTIONAL INTERPOLATION OF LIDAR DATA FROM SOUTHERN VERACRUZ, MEXICO: IMPLICATIONS FOR EARLY OLMEC SUBSISTENCE

Published online by Cambridge University Press:  08 February 2019

Carolina Ramírez-Núñez
Affiliation:
LiDAR Research Group, GIScience Department, Heidelberg University, Germany. Present address: CONACyT-UAM Azcapotzalco. Insurgentes Sur 1582, Crédito Constructor, 03940, Mexico City, Mexico
Ann Cyphers*
Affiliation:
Archaeology Department, Institute of Anthropological Research, UNAM, Circuito de la Investigación Científica s/n, 04510, Ciudad Universitaria, Mexico City, Mexico
Jean-François Parrot
Affiliation:
Geospatial Analysis Laboratory, Institute of Geography, UNAM, Circuito de la Investigación Científica s/n, 04510, Ciudad Universitaria, Mexico City, Mexico
Bernhard Höfle
Affiliation:
LiDAR Research Group, GIScience Department, Heidelberg University, Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany
*
E-mail correspondence to: [email protected]

Abstract

From their beginnings some 4,000 years ago to their decadence around 400 b.c., the Olmec people achieved a high level of sociopolitical complexity and dominated their native geographic territory, the southern Gulf Coast of Mexico. The first Olmec capital of San Lorenzo, Veracruz, was the only site in Mesoamerica that produced imposing monumental stone sculpture and architecture between 1800 and 1000 b.c. These characteristics reflect the capabilities of its centralized political system headed by hereditary rulers with divine legitimation. Key issues regarding the development of San Lorenzo Olmec culture center on subsistence and environment. The present study focuses on a portion of the landscape located immediately north of the first Olmec capital of San Lorenzo, Veracruz, that has been proposed as a key resource area during the development of the first civilization in Mesoamerica. We calculate the surface, volume, and water depth of this area based on archaeological data and a Digital Terrain Model (DTM) derived from an airborne Light Detection and Ranging (LiDAR) survey. The expected minimum and maximum area, local minimum altitude, and the DTM of 5-m spatial resolution provide a basis for inferences regarding the characteristics of the wetland ecosystem during Olmec times. The goal is to quantify and qualify the potential of this resource zone relying on LiDAR topography. Our models validate the observations in the field and, when combined with algorithms, they confirm the archaeological conclusions. We affirm that the northern plain in Olmec times was deeper than it is today and would have been a source of abundant aquatic resources for the primary subsistence of the early Olmec society.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arieta Baizabal, Virginia, and Cyphers, Ann 2017 Densidad poblacional en la capital olmeca de San Lorenzo, Veracruz. Ancient Mesoamerica 78:6173.Google Scholar
Ballarin, Martina, Balleti, Caterina, and Guerra, Francesco 2015 Action Cameras and Low-Cost Aerial Vehicles in Archaeology. In Proceedings Volume 9528, Videometrics, Range Imaging, and Applications XIII, edited by Remondino, Fabio and Shortis, Mark R., p. 952813. SPIE, Bellingham.Google Scholar
Bernal, Ignacio 1968 El mundo olmeca. Editorial Porrúa, Mexico City.Google Scholar
Carneiro, Robert L. 1988 Reflexiones adicionales sobre la concentración de recursos y su papel en el surgimiento del Estado. In Coloquio V. Gordon Childe, estudios sobre la revolución neolítica y la revolución urbana, edited by Manzanilla, Linda, pp. 265282. Instituto de Investigaciones Antropológicas, Universidad Nacional Autónoma de México, Mexico City.Google Scholar
Caso, Alfonso 1965 ¿Existió un imperio olmeca? Memorias de El Colegio Nacional 5:152.Google Scholar
Chase, Adrian S.Z., Chase, Diane Z., and Chase, Arlen F. 2017 LiDAR for Archaeological Research and the Study of Historical Landscapes. In Sensing the Past: Geotechnologies and the Environment, edited by Masini, Nicola and Soldovieri, Francesco, pp. 89199. Springer, Cham.Google Scholar
Chase, Arlen F., Chase, Diane Z., Awe, Jaime J., Weishampel, John F., Iannone, Gyles, Moyes, Holley, Yaeger, Jason, and Brown, Kathryn M. 2014 The Use of Lidar in Understanding the Ancient Maya Landscape: Caracol and Western Belize. Advances in Archaeological Practice 2:147160.Google Scholar
Chase, Arlen F., Chase, Diane Z., Weishampel, John F., Drake, Jason B., Shrestha, Ramesh L., Slatton, K. Clint, Awe, Jaime J., and Carter, William E. 2011 Airborne Lidar Archaeology and the Ancient Maya Landscape at Caracol, Belize. Journal of Archaeological Science 38:387398.Google Scholar
Coe, Michael D. 1968 America's First Civilization: Discovering the Olmec. American Heritage, New York.Google Scholar
Coe, Michael D., and Diehl, Richard A. 1980 In the Land of the Olmec: The Archaeology of San Lorenzo Tenochtitlan. 2 vols. University of Texas Press, Austin.Google Scholar
Colson, Elizabeth 1979 The Harvey Lecture Series. In Good Years and In Bad: Food Strategies of Self-Reliant Societies. Journal of Anthropological Research 35:1829.Google Scholar
Coluzzi, Rosa, Lanorte, Antonio, and Lasaponara, Rosa 2010 On the LiDAR Contribution for Landscape Archaeology and Paleoenvironmental Studies: The Case of Bosco dell'Incoronata (Southern Italy). Advances in Geosciences 24:125132.Google Scholar
Conklin, Harold D. 1961 The Study of Shifting Cultivation. Current Anthropology 2:2761.Google Scholar
Cyphers, Ann 2004 Escultura olmeca de San Lorenzo Tenochtitlán. Instituto de Investigaciones Antropológicas Coordinación de Humanidades, Universidad Nacional Autonóma de México, Mexico City.Google Scholar
Cyphers, Ann, Zúñiga, Belem and Di Castro, Anna 2005 Another Look at Bufo marinus and the San Lorenzo Olmec. Current Anthropology 46:S129133.Google Scholar
Cyphers, Ann, and Ortiz, Mario Arturo 2000 Geomorphology and Ancient Cultural Landscapes of Southern Veracruz. In Mounds, Modoc and Mesoamerica, Papers in Honor of Melvin L. Fowler, edited by Ahler, Steven R., pp. 99110. Illinois State Museum, Springfield.Google Scholar
Cyphers, Ann, Zurita Noguera, Judith, and Rodríguez, Marci Lane 2013 Retos y riesgos de la vida olmeca. Instituto de Investigaciones Antropológicas, Universidad Nacional Autónoma de México, Mexico City.Google Scholar
de Cserna, Zoltan 1958 Notes on the Tectonics of Southern Mexico. American Association of Petroleum Geologists 86:523532.Google Scholar
de la Fuente, Beatriz 1975 Las cabezas colosales olmecas. Fondo de Cultura Económica, Mexico City.Google Scholar
Doneus, Michael, Briese, Christian, Fera, Martin, and Janner, Martin 2008 Archaeological Prospection of Forested Areas Using Full-Waveform Airborne Laser Scanning. Journal of Archaeological Science 35:882893.Google Scholar
Flannery, Kent V. 1982 Review of In the Land of the Olmec: The Archaeology of San Lorenzo Tenochtitlán, Volume 1; In the Land of the Olmec: The People of the River, Volume 2. American Anthropologist, n.s., 84:442447.Google Scholar
Golden, Charles, Murtha, Timothy, Cook, Bruce, Shaffer, Derek S., Schroder, Whittaker, Hermitt, Elijah J., Firpi, Omar Alcover, and Scherer, Andrew K. 2016 Reanalyzing Environmental Lidar Data for Archaeology: Mesoamerican Applications and Implications. Journal of Archaeological Science, Reports 9:293308.Google Scholar
Halstead, Paul, and O'Shea, John 1989 Introduction: Cultural Responses to Risk and Uncertainty. In Bad Year Economics: Cultural Responses to Risk and Uncertainty, edited by Halstead, Paul and O'Shea, John, pp. 110. Cambridge University Press, New York.Google Scholar
Hämmerle, Martin, Schütt, Fabian, and Höfle, Bernhard 2016 Terrestrial and Unmanned Aerial System Imagery for Deriving Photogrammetric Three-Dimensional Point Clouds and Volume Models of Mass Wasting Sites. Journal of Applied Remote Sensing 10:2629.Google Scholar
Heizer, Robert F. 1960 Agriculture and Theocratic State in Lowland Southeastern Mexico. American Antiquity 26:215222.Google Scholar
Herrera Castañeda, Sergio R. 1978 Neotectonismo y sedimentación del área Villa Azueta-San Juan Evangelista, Edo. de Veracruz. Tesis de licenciatura, Facultad de Ingeniería, Universidad Nacional Autónoma de México, Mexico City.Google Scholar
Hodgson, Michael E., and Bresnahan, Patrick 2004 Accuracy of Airborne Lidar-Derived Elevation: Empirical Assessment and Error Budget. Photogrammetric Engineering and Remote Sensing 70:331339.Google Scholar
Hungsberg, Ulrich 1960 Origen del azufre del casquete de los domos salinos: Cuenca Salina del Istmo de Tehuantepec. Boletín 51. Consejo de Recursos Minerales No Renovables, Mexico.Google Scholar
Hutson, Scott R. 2015 Adapting Lidar for Regional Variation in the Tropics: A Case Study from the Northern Maya Lowlands. Journal of Archaeological Science, Reports 4:252263.Google Scholar
Instituto Nacional de Estadística y Geografía (INEGI) 2013 Nube de puntos Lidar: E15C14E, E15C14F, E15C24B, E15C24C. Instituto Nacional de Estadística y Geografía, Mexico City.Google Scholar
Kruger, Robert Paul 1996 An Archaeological Survey in the Region of the Olmec, Veracruz. Ph.D. dissertation, University of Pittsburgh, Pittsburgh.Google Scholar
Rodríguez, Lane, Marci, Rogelio Aguirre, and González, Javier 1997 Producción campesina del maíz en San Lorenzo Tenochtitlán. In Población, subsistencia y medio ambiente en San Lorenzo Tenochtitlán, edited by Cyphers, Ann, pp. 5573. Instituto de Investigaciones Antropológicas, Universidad Nacional Autónoma de México, Mexico City.Google Scholar
Latrubesse, Edgardo M., Amsler, Mario L., de Morais, R.P., and Aquino, S. 2009 The Geomorphologic Response of a Large Pristine Alluvial River to Tremendous Deforestation in the South American Tropics: The Case of the Araguaia River. Geomorphology 113:239252.Google Scholar
Limp, W. Frederick, and Reidhead, Van A. 1979 An Economic Evaluation of Fish Utilization in Riverine Environments. American Antiquity 44:7078.Google Scholar
Masini, Nicola, Coluzzi, Rosa, and Lasaponara, Rosa 2011 On the Airborne Lidar Contribution in Archaeology: From Site Identification to Landscape Investigation. In Laser Scanning: Theory and Applications, edited by Wang, Chau-Chang, pp. 263–190. IntechOpen, London.Google Scholar
Ortiz, Mario Arturo, and Cyphers, Ann 1997 La geomorfología y las evidencias arqueológicas en la región de San Lorenzo Tenochtitlán, Veracruz. In Población, subsistencia y medio ambiente en San Lorenzo Tenochtitlán, edited by Cyphers, Ann, pp. 3154. Instituto de Investigaciones Antropológicas, Universidad Nacional Autónoma de México, Mexico City.Google Scholar
O'Shea, John M. 1989 The Role of Wild Resources in Small-Scale Agricultural Systems: Tales From the Lakes and the Plains. In Bad Year Economics: Cultural Responses to Risk and Uncertainty, edited by Halstead, Paul and O'Shea, John, pp. 5767. Cambridge University Press, New York.Google Scholar
Padilla y Sánchez, Ricard José 2007 Evolución geológica del sureste mexicano desde el Mesozoico al presente en el contexto regional del Golfo de México. Boletín de la Sociedad Geológica Mexicana LIX:1942.Google Scholar
Palerm, Angel and Wolf, Eric 1961 Ecological Potential and Cultural Development in Mesoamerica. In Studies in Human Ecology, Social Science Monographs III, pp. 138. Pan American Union, Washington, DC.Google Scholar
Parrot, Jean-François 2012 Software DEMONIO (Digital Elevation Models Obtained by Numerical Interpolating Operations). Instituto Nacional de Derecho de Autor, Mexico City.Google Scholar
Power, Mare E., Gary, Gary, Dietrich, William E., and Sun, Adrian 1979 How Does Floodplain Width Affect Floodplain River Ecology? A Preliminary Exploration Using Simulations. Geomorphology 13:301317.Google Scholar
Renslow, Michael S. (editor) 2012 Airborne Topographic Lidar Manual. American Society of Photogrammetry and Remote Sensing, Bethesda.Google Scholar
Rueda-Gaxiola, Jaime 2003 The Origin of the Gulf of Mexico Basin and Its Petroleum Subbasin in Mexico, Based on Red Bed and Salt Paynostratigraphy. In The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation and Plate Tectonics, edited by Bartolini, Claudio, Buffler, Richard T., and Blickwede, Jon F., pp. 246282. American Association of Petroleum Geologist Memoir 79. American Association of Petroleum Geologists, Tulsa.Google Scholar
Servicio Geológico Mexicano 2004 Carta geológico-minera Coatzacoalcos, E15-1-4. Veracruz, Oaxaca y Tabasco. Servicio Geológico Mexicano, Mexico City.Google Scholar
Shorr, Nicholas 2000 Early Utilization of Flood-Recession Soils as a Response to the Intensification of Fishing and Upland Agriculture: Resource-Use Dynamics in a Large Tikuna Community. Human Ecology 28:73107.Google Scholar
Smalley, John, and Blake, Michael 2003 Sweet Beginning, Stalk Sugar and the Domestication of Maize. Current Anthropology 44:675689.Google Scholar
Symonds, Stacey, Cyphers, Ann, and Lunagómez, Roberto 2002 Asentamiento prehispánico en San Lorenzo Tenochtitlán. Instituto de Investigaciones Antropológicas, Universidad Nacional Autónoma de México, Mexico City.Google Scholar
West, Robert Cooper, Psuty, Norbert P., and Thom, Bruce G. 1969 The Tabasco Lowlands of Southeastern Mexico. Louisiana State University Press, Baton Rouge.Google Scholar
Wing, Elizabeth S. 1980 Faunal Remains from San Lorenzo, Vol. I. In In the Land of Olmec, edited by Coe, Michael D. and Diehl, Richard A., pp. 375386. University of Texas Press, Austin.Google Scholar
Zurita Noguera, Judith 1997 Los fitolitos: Indicadores sobre dieta y vivienda en San Lorenzo. In Población, subsistencia y medio ambiente en San Lorenzo Tenochtitlán, edited by Cyphers, Ann, pp. 7587. Instituto de Investigaciones Antropológicas, Universidad Nacional Autónoma de México, Mexico City.Google Scholar