With the ever-increasing range of medical technologies at our disposal to mediate the processes of life, from conception to death, comes an ever-increasing number of decision points about human control of fate. And as we debate altering our fate—whether dictated by a deity or by chance—the discussion frequently devolves into a question of whether we may alter not only our own fate, but also that of our children. The advent of genome editing, whether by older methods or the newer, often more easily used methods employing CRISPR, has only made debating the controversial possibility of heritable “germline” editing more urgent. The advent of genome editing, whether by older methods or the newer, often more easily used methods employing CRISPR, has only made debating the controversial possibility of heritable “germline” editing more urgent. On the eve of the Second International Summit on Human Genome Editing, held at the end of November 2018 in Hong Kong, a startling and disturbing story began circulating - a Chinese researcher announced the first births of children whose genomes had been edited at the embryonic stage. The work (assuming the claim can be verified) suffered from myriad problems, beginning with the lack of a compelling medical need, and including inadequate preclinical research, lack of peer review, flawed subject recruitment and consent procedures, and an apparent disregard for both formal and informal rules governing genetic manipulation of embryos. The summit's organizing committee issued a statement, distinguishing this experiment from what would be a responsible translational pathway forward. But not surprisingly, others around the world immediately called for a global, enforceable prohibition on such genetic engineering. On the occasion of the Universal Declaration on Human Rights (UDHR)’s seventieth anniversary, this essay argues that the current human rights law on germline editing misunderstands both the mechanisms of genetics and the moral basis for human rights, suggesting a more nuanced approach as we move forward and keep pace with new gene-editing technologies.