Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T08:49:54.722Z Has data issue: false hasContentIssue false

The Analysis of Cutmarks on Archaeofauna: A Review and Critique of Quantification Procedures, and a New Image-Analysis GIS Approach

Published online by Cambridge University Press:  20 January 2017

Yoshiko Abe
Affiliation:
Interdepartmental Doctoral Program in Anthropological Sciences, SUNY at Stony Brook, Stony Brook, NY 11794-4364
Curtis W. Marean
Affiliation:
Institute of Human Origins, Department of Anthropology, PO Box 872402, Arizona State University, Tempe, AZ 85287-2402
Peter J. Nilssen
Affiliation:
Department of Archaeology, Iziko - South African Museum, P.O. Box 61, Cape Town, 8000, South Africa
Zelalem Assefa
Affiliation:
Interdepartmental Doctoral Program in Anthropological Sciences, SUNY at Stony Brook, Stony Brook, NY 11794-4364
Elizabeth C. Stone
Affiliation:
Department of Anthropology, SUNY at Stony Brook, Stony Brook, NY 11794-4364

Abstract

Zooarchaeologists utilize a diverse set of approaches for quantifying cutmark frequencies. The least quantitative method for cutmark analysis relies on composite diagrams of cutmarks overlain on drawings of skeletal elements (diagramatic methods). To date, interpretations of these data have generally relied on qualitative and subjective assessments of cutmark frequency and placement. Many analysts count the number of fragments that have a cutmark, regardless of the number of cutmarks on the fragments (fragment-count data). Others count the number of cutmarks (cutmark-count data). Both can be expressed as simple counts (NISP data), or as a count of some more-derived measure of skeletal element abundance (MNE data). All of these approaches provide different types of data and are not intercomparable. Several researchers have shown that fragmentation of specimens impacts the frequency of cuts, and we show here that fragmentation impacts all these current approaches in ways that compromise comparative analysis when fragmentation differs between assemblages. We argue that cutmark frequencies from assemblages with differing levels of fragmentation are most effectively made comparable by correcting the frequency of cutmarks by the observed surface area. We present a new method that allows this surface area correction by using the image analysis abilities of GIS. This approach overcomes the fragmentation problem. We illustrate the power of this technique by comparing a highly fragmented archaeological assemblage to an unfragmented experimental collection.

Résumé

Résumé

Los zooarqueólogos utilizan diversos métodos para cuantificar la frecuencia de huellas de corte. El método menos cuantitativo para el análisis de huellas de corte utiliza diagramas compuestos de este tipo de huellas que se sobreponen a dibujos de elementos esqueléticos (método diagramático). Hasta el día de hoy, la interpretación de estas observaciones se ha basado en evaluaciones cualitativas y subjetivas de la frecuencia y posición de huellas de corte. Muchos investigadores cuentan el número de fragmentos óseos con huellas de corte, sin considerar el número de huellas en los mismos fragmentos (método de conteo de fragmentos). Otros investigadores cuentan simplemente el número de huellas de corte (método de conteo de huellas de corte). Ambos se pueden expresar ya sea como cuantificación simple (datos de NISP), ó como una medida derivada de abundancia de elementos óseos (datos de MNE). Todos estos métodos ofrecen distintos tipos de observaciones, los cuales nos son comparables entre sí. Varios investigadores han mostrado que la fragmentación ósea afecta la frecuencia de huellas de corte. Nosotros mostramos en este artículo que la fragmentación ósea influye notablemente en todos los métodos usados hasta el momento, y que, debido a ello, se arriesgan los análisis comparativos cuando el grado de fragmentación ósea es distinto entre las colecciones a comparar. Proponemos que cuando el grado de fragmentación ósea varía entre las colecciones, la frecuencia de huellas de corte podría ser comparada en forma más efectiva al corregir la referida frecuencia con la medida del área de la superficie observada. Nosotros presentamos un método nuevo que permite estandarizar la frecuencia de huellas de corte por área de superficie a través del uso de análisis de imagen con GIS. Este método supera el problema de la fragmentación ósea. Aquí mostramos su potencial al comparar una colección ósea altamente fragmentada con otra colección experimental no fragmentada.

Type
Reports
Copyright
Copyright © The Society for American Archaeology 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Avery, G., Cruz-Uribe, K., Goldberg, P., Grine, F. E., Klein, R. G.,Lenardi, M. J., Marean, C. W., Rink, W. J., Schwarcz, H. P., Thackeray, A. I., and Wilson, M. L. 1997 The 1992-1993 excavations at the Die Kelders Middle and Later Stone Age Cave Site, South Africa. Journal of Field Archaeology 24:1-29.Google Scholar
Bartram, L. E. 1993 An Ethnoarchaeological Analysis of Kua San (Botswana) Bone Food Refuse. Unpublished Ph.D. dissertation, Department of Anthropology, University of Wisconsin at Madison. Google Scholar
Bartram, L. E., and Marean, C. W. 1999 Explaining the “Klasies Pattern”: Kua Ethnoarchaeology, the Die Kelders Middle Stone Age Archaeofauna, Long Bone Fragmentation and Carnivore Ravaging. Journal of Archaeological Science 2:69-29.Google Scholar
Binford, L. R. 1978 Nunamiut Ethnoarchaeology. Academic Press, New York.Google Scholar
Binford, L. R. 1981 Bones: Ancient Men and Modern Myths. Academic Press, New York.Google Scholar
Binford, L. R. 1984 The Faunal Remains from Klasies River Mouth. Academic Press, New York.Google Scholar
Binford, L. R. 1985 Human Ancestors: Changing Views of their Behavior. Journal of Anthropological Archaeology 4:292-327.CrossRefGoogle Scholar
Binford, L. R. 1988 Fact and Fiction about the Zinjanthropus Floor: Data, Arguments, and Interpretations. Current Anthropology 29:123-135.CrossRefGoogle Scholar
Blumenschine, R. J. 1988 An Experimental Model of the Timing of Hominid and Carnivore influence on Archaeological Bone Assemblages. Journal of Archaeological Science 15:483-502.CrossRefGoogle Scholar
Blumenschine, R. J., Marean, C. W, and Capaldo, S. D. 1996 Blind Tests on Inter-Analyst Correspondence and Accuracy in the Identification of Cut Marks, Percussion Marks, and Carnivore Tooth Marks on Bone Surfaces. Journal of Archaeological Science 23:493-507.CrossRefGoogle Scholar
Brain, C. K. 1981 The Hunters or the Hunted? University of Chicago Press, Chicago.Google Scholar
Bunn, H. T. 1981 Archaeological Evidence for Meat-Eating by Plio-Pleistocene Hominids from Koobi Fora and Olduvai Gorge. Nature 291:574-576.CrossRefGoogle Scholar
Bunn, H. T. 1991 A Taphonomic Perspective on the Archaeology of Human Origins. Annual Review of Anthropology 20: 433467.Google Scholar
Bunn, H. T, and Kroll, E. M. 1986 Systematic Butchery by Plio-Pleistocene Hominids at Olduvai Gorge, Tanzania. Current Anthropology 27:431-452.CrossRefGoogle Scholar
Bunn, H. T, and Kroll, E. M. 1988 Fact and Fiction about the Zinjanthropus Floor: Data, Arguments, and Interpretations. Current Anthropology 29: 135-149.Google Scholar
Capaldo, S. D. 1995 Inferring Hominid and Carnivore Behavior from Dual- Patterned Archaeofaunal Assemblages. Unpublished Ph.D. dissertation, Department of Anthropology, Rutgers University. Google Scholar
Capaldo, S. D. 1997 Experimental Determinations of Carcass Processing by Plio-Pleistocene Hominids and Carnivores at FLK 22 (Zinjanthropus), Olduvai Gorge, Tanzania. Journal of Human Evolution 33:555-597.Google Scholar
Raven, P. H. 1998a Methods, Marks and Models for Inferring Hominid and Carnivore Behavior. Journal of Human Evolution 35:323-326.Google Scholar
Raven, P. H. 1998b Simulating the Formation of Dual-Patterned Archaeofaunal Assemblages with Experimental Control Samples. Journal of Archaeological Science 25:311-330.Google Scholar
Chase, P. G. 1986 The Hunters of Combe Grenal: Approaches to Middle Paleolithic Subsistence in Europe BAR International Series 286, Oxford. Google Scholar
Chase, P. G. 1988 Scavenging and Hunting in the Middle Paleolithic. In Upper Pleistocene Prehistory of Western Eurasia, edited by Dibble, H. L. and Montet-White, A., pp. 225-232. The University of Pennsylvania Museum, Philadelphia.Google Scholar
Crader, D. C. 1983 Recent Single-Carcass Bone Scatters and the Problem of “Butchery” Sites in the Archaeological Record. In Animals and Archaeology: Hunters and their Prey, edited by Clutton-Brock, J. and Grigson, C., pp. 107-141. British Archaeological Reports 163, Oxford.Google Scholar
Dibble, H. L. 1995 Middle Paleolithic Scraper Reduction: Background, Clarification, and Review of the Evidence to Date. Journal of Archaeological Method and Theory 2:299-368.Google Scholar
Driesch, A. von den 1976 A Guide to the Measurement of Animal Bones from Archaeological Sites. Harvard University, Peabody Museum of Archaeology and Ethnology Bulletin 1, Cambridge. Google Scholar
Fisher, J. W. Jr. 1995 Bone Surface Modifications in Zooarchaeology. Journal of Archaeological Method and Theory 2:7-68.CrossRefGoogle Scholar
Frison, G. 1970 The Glenrock Buffalo Jump, 48CO304: Late Prehistoric Period buffalo Procurement and Butchering on the Northwestern Plains. Plains Anthropologist, Memoir No. 7:1-55.Google Scholar
Gifford-Gonzalez, D. 1989 Ethnographic Analogues for Interpreting Modifed Bones: Some Cases from East Africa. In Bone Modification, edited by Bonnichsen, R. and Sorg, M. H., pp. 179-246. Center for the Study of the First Americans, Orono, Maine.Google Scholar
Gifford-Gonzalez, D. 1991 Bones Are Not Enough: Analogues, Knowledge, and Interpretive Strategies in Zooarchaeology. Journal of Anthropological Archaeology 10:215-254.CrossRefGoogle Scholar
Gifford, D. P., and Crader, D. C. 1977 A Computer Coding System for Archaeological Faunal Remains. American Antiquity 42:225-238.CrossRefGoogle Scholar
Gifford, D. P., Isaac, G., and Nelson, C. M. 1980 Evidence for Predation and Pastoralism at Prolonged Drift: A Pastoral Neolithic Site in Kenya. Azania 15:57-108.CrossRefGoogle Scholar
Gilbert, M. 1969 Some Aspects of Diet and Butchering Techniques among Prehistoric Indians in South Dakota. Plains Anthropologist 14:277-294.Google Scholar
Grayson, D. K. 1989 Bone Transport, Bone Destruction, and Reverse Utility Curves. Journal of Archaeological Science 16:643-652.Google Scholar
Grayson, D. K., and Delpech, F. 1994 The Evidence for Middle Paleolithic Scavenging from Couche VIII, Grotte Vaufrey (Dordogne, France). Journal of Archaeological Science 21:359-375.CrossRefGoogle Scholar
Guilday, J. E., Parmalee, P. W., and Tanner, D. P. 1962 Aboriginal Butchering Techniques at the Eschelman Site (36 La 12), Lancaster County, Pennsylvania. Pennsylvania Archaeologist 32:59-83.Google Scholar
Klein, R. G. 1989 Why Does Skeletal Part Representation Differ between Smaller and Larger Bovids at Klasies River Mouth and other Archaeological Sites? Journal of Archaeological Science 6:363-381.Google Scholar
Lam, Y. M., Chen, X., and Pearson, O. M. 1999 Intertaxonomic Variability in Patterns of Bone Density and the Differential Representation of Bovid, Cervid, and Equid Elements in the Archaeological Record. American Antiquity 64:343-362.Google Scholar
Landon, D. B. 1996 Feeding Colonial Boston: A Zooarchaeological Study. Historical Archaeology 30: 1-153.Google Scholar
Lyman, R. L. 1984 Bone Density and Differential Survivorship of Fossil Classes. Journal of Anthropological Archaeology 3:259-299.Google Scholar
Lyman, R. L. 1985 Bone Frequencies: Differential Transport, in Situ Destruction, and the MGUI. Journal of Archaeological Science 12:221-236.Google Scholar
Lyman, R. L. 1987 Archaeofaunas and Butchery Studies: A Taphonomic Perspective. In Advances in Archaeological Method and Theory, vol. pp. 10, edited by Schiffer, M. J., pp. 249-337. Academic Press, New York.CrossRefGoogle Scholar
Lyman, R. L. 1992 Anatomical Considerations of Utility Curves in Zooarchaeology. Journal of Archaeological Science 19:7-22.CrossRefGoogle Scholar
Marean, C. W. 1992 Hunter to Herder: Large Mammal Remains from the Hunter-Gatherer Occupation At Enkapune Ya Muto Rockshelter (Central Rift, Kenya). African Archaeological Review 10:65-127.CrossRefGoogle Scholar
Marean, C. W. 1998 A Critique of the Evidence for Scavenging by Neanderthals and Early Modern Humans: New Data from Kobeh Cave (Zagros Mousterian) and Die Kelders (South Africa Middle Stone Age). Journal of Human Evolution 35:111-136.Google Scholar
Raven, P. H. 2000a Zooarchaeological and Taphonomic Analysis of the Die Kelders Cave 1 Layers 10 and 11 Middle Stone Age Larger Mammal Fauna. Journal of Human Evolution 38:197-233.Google Scholar
Marean, C. W., Abe, Y, Nilssen, P. J., and Stone, E. C. 2001 Estimating the Minimum Number of Skeletal Elements (MNE) in Zooarchaeology: A Review and A New Image- Analysis GIS Approach. American Antiquity 66:333-348.Google Scholar
Marean, C. W., and Assefa, Z. 1999 Zooarchaeological Evidence for the Faunal Exploitation Behavior of Neandertals and Early Modern Humans. Evolutionary Anthropology 8:22-37.Google Scholar
Marean, C. W., Goldberg, P., Avery, G., Grine, F. E., and Klein, R. G. 2000b Middle Stone Age Stratigraphy and Excavations at Die Kelders Cave 1 (Western Cape Province, South Africa): the 1992, 1993, and 1995 Field Seasons. Journal of Human Evolution 38:7-42.CrossRefGoogle ScholarPubMed
Marean, C. W., and Kim, S. Y. 1998 Mousterian Faunal Remains from Kobeh Cave (Zagros Mountains, Iran): Behavioral Implications for Neanderthals and Early Modern Humans. Current Anthropology 39:S79-S114.CrossRefGoogle Scholar
Marean, C. W, and Spencer, L. M. 1991 Impact of Carnivore Ravaging on Zooarchaeological Measures of Element Abundance. American Antiquity 56:645-658.Google Scholar
Marshall, F. 1990 Cattle Herds and Caprine Flocks. In Early Pastoralists of Southwestern Kenya, edited by Robertshaw, P., pp. 205-260. British Institute of East Africa, Nairobi.Google Scholar
Milo, R. G. 1994 Human-Animal Interactions in Southern African Prehistory: A Microscopic Study of Bone Damage Signatures. Unpublished Ph.D. dissertation, Department of Anthropology, University of Chicago. Google Scholar
Milo, R. G. 1998 Evidence for Hominid Predation At Klasies River Mouth, South Africa, and Its Implications for the Behavior of Early Modern Humans. Journal of Archaeological Science 25:99-133.CrossRefGoogle Scholar
Nilssen, P. J. 2000 An Actualistic Butchery Study in South Africa and Its Implications for Reconstructing Hominid Strategies of Carcass Acquisition and Butchery in the Upper Pleistocene and Plio-Pleistocene. Unpublished Ph.D. dissertation, Department of Archaeology, University of Cape Town. Google Scholar
Parmalee, P. W. 1965 The Food Economy of Archaic and Woodland Peoples at the Tick Creek Cave Site, Missouri. Missouri Archaeologist 27: l-34.Google Scholar
Potts, R. 1983 Foraging for Faunal Resources by Early Hominids at Olduvai Gorge, Tanzania. In Animals and Archaeology: 1. Hunters and Their Prey, edited by Clutton-Brock, J. and Grigson, C., pp. 51-62. British Archaeological Reports International Series 163, Oxford.Google Scholar
Potts, R. 1988 Early Hominid Activities at Olduvai. Aldine De Gruyter, New York.Google Scholar
Potts, R., and Shipman, P. 1981 Cutmarks Made by Stone Tools on Bones From Olduvai Gorge, Tanzania. Nature 291:577-580.CrossRefGoogle Scholar
Rapson, D. J. 1990 Pattern and Process in Intra-Site Spatial Analysis: Site Structural and Faunal Research at the Bugas-Holding Site. Unpublished Ph.D. dissertation, Department of Anthropology, University of New Mexico, Albuquerque.Google Scholar
Selvaggio, M. M. 1994 Carnivore Tooth Marks and Stone Tool Butchery Marks On Scavenged Bones: Archaeological Implications. Journal of Human Evolution 27:215-228.Google Scholar
Selvaggio, M. M. 1998 Evidence for a Three-Stage Sequence of Hominid and Carnivore Involvement with Long Bones at FLK Zinjanthropus, Olduvai Gorge, Tanzania. Journal of Archaeological Science 25:191-202.Google Scholar
Shipman, P. 1981 Applications of Scanning Electron Microscopy To Taphonomic Problems. In The Research Potential of Anthropological Museum Collections, edited by Cantwell, A. M., Griffin, J. B., and Rothschild, N. A., pp. 357-385. Annals of the New York Academy of Sciences, Volume 376, New York.Google Scholar
Shipman, P. 1986 Studies of Hominid-Faunal Interactions at Olduvai Gorge. Journal of Human Evolution 15:691-706.Google Scholar
Shipman, P. 1988 Actualistic Studies of Animal Resources and Hominid Activities. In Scanning Electron Microscopy and Archaeology, edited by Olsen, S. L., pp. 261-285. British Archaeological Reports International Series 452, Oxford.Google Scholar
Shipman, P., and Rose, J. 1983 Early Hominid Hunting, Butchering, and Carcass-Processing Behaviors: Approaches to the Fossil Record. Journal of Anthropological Archaeology 2:57-98.Google Scholar
Stiner, M. C. 1994 Honor Among Thieves: A Zooarchaeological Study of Neandertal Ecology. Princeton University Press, Princeton, New Jersey.Google Scholar
Thackeray, A. I. 2000 Middle Stone Age Artifacts From the 1993 and 1995 Excavations of Die Kelders Cave 1, South Africa. Journal of Human Evolution 38:147-168.Google Scholar
Wheat, J. B. 1979 The Jurgens Site. Plains Anthropologist, Memoir No. 15. Google Scholar
Wilson, M. C. 1982 Cut Marks and Early Hominids: Evidence for Skinning. Nature 298:303.Google Scholar
Yellen, J. E. 1991 Small Mammals: !Kung San Utilization and Production of Faunal Assemblages. Journal of Anthropological Archaeology 10:1-26.Google Scholar