Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T19:24:26.606Z Has data issue: false hasContentIssue false

Heat and Mass Transfer in Aeronautical Engineering

Published online by Cambridge University Press:  07 June 2016

D. B. Spalding*
Affiliation:
Imperial College of Science and Technology
Get access

Summary

The main purpose of the paper is to show that standard techniques of heat and mass transfer theory, as practised in other branches of engineering, can be helpfully applied to the corresponding aeronautical problems, particularly those arising in connection with high-speed flight and rocket propulsion.

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society. 1960

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Spalding, D. B. The Combustion of Liquid Fuels. Fourth Symposium on Combustion, Williams and Wilkins, Baltimore, p. 847, 1953.Google Scholar
2. Spalding, D. B. Some Fundamentals of Combustion, Butterworths, London, 1955.Google Scholar
3. Spalding, D. B. A Standard Formulation for the Steady Convective Mass Transfer Problem. To be published.Google Scholar
4. Li, T. Y. and Geiger, R. E. Stagnation Point of a Blunt Body in Hypersonic Flow. Journal of the Aeronautical Sciences, Vol. 24, pp. 2532, 1957.CrossRefGoogle Scholar
5. Eckert, E. R. G. Die Berechnung des Waermuebergangs in der laminaren Grenzschicht. V.D.I. Forschungsheft 416, 1942.Google Scholar
6. Mangler, W. Zusammenhang zwischen ebenen und rotationssymmetrischen Grenzschichten in compressiblen Fluessigkeiten. Zeitschrift für angewandte Mathematik und Mechanik, Vol. 28, p. 97, 1948.Google Scholar
7. Fay, J. A. and Riddell, F. R. Theory of Stagnation Point Heat Transfer in Dissociated Air. Journal of the Aeronautical Sciences, Vol. 25, pp. 7386, 1958.Google Scholar
8. Predvoditelev, A. S., et al. Tables of Thermodynamic Functions of Air: 6,000°K to 12,000°K. Infosearch, London, 1958.Google Scholar
9. Keenan, J. H. and Kaye, J. Gas Tables. Wiley, New York, 1948.Google Scholar
10. Spalding, D. B. Adiabatic Wall Temperature due to Mass Transfer Cooling with a Combustible Gas. American Rocket Society Journal, Vol. 29, pp. 666668, 1959.Google Scholar
11. Spalding, D. B. and Smith, A. G. Verbrennung fluessiger und fester Brennstoffe als Grenzschicht problem. Brennstoff-Waerme-Kraft, Vol. 10, pp. 271273, 1958.Google Scholar
12. Spalding, D. B. and Tyler, R. D. Graphical Representation of Thermodynamic Properties of Reacting Two-Phase Mixtures. Conference on Thermodynamic and Transport Properties of Fluids, Session 4, Paper 1. Institute of Mechanical Engineers, 1957.Google Scholar
13. Adams, Mac. C. Recent Advances in Ablation. American Rocket Society Journal, Vol 29, pp. 625632, 1959.Google Scholar
14. Wells, A. A. The Iron-Oxygen Combustion Process: a Study Related to Oxygen Cutting. British Welding Journal, pp. 392400, September 1955.Google Scholar
15. Sutton, G. P. Rocket Propulsion Elements, 2nd Edition. Wiley, New York, 1958.Google Scholar
16. Ambrok, G. S. Approximate Solution of the Equation for the Thermal Boundary Layer with Variations in Boundary Layer Structure. Soviet Physics Technical Physics, Vol. 2, p. 1979, 1957.Google Scholar
17. Rubesin, M. W. An Analytical Estimation of the Effect of Transpiration Cooling on the Heat-Transfer and Skin-Friction Characteristics of a Compressible Turbulent Boundary Layer. N.A.C.A. T.N. 3341, 1954.Google Scholar
18. Mickley, H. S. and Davis, R. S. Momentum Transfer for Flow over a Flat Plate with Blowing. N.A.C.A. T.N. 4017, 1957.Google Scholar
19. Wimpress, R. N., Internal Ballistics of Solid-Fuel Rockets. McGraw-Hill, New York, 1950.Google Scholar
20. Mickley, H. S., Ross, R. C., Squyers, A. L. and Stewart, W. E. Heat, Mass and Momentum Transfer for Flow over a Flat Plate with Blowing or Suction. N.A.C.A. T.N. 3208, 1954.Google Scholar
21. Livingood, J. N. B. and Donoughe, P. L. Summary of Laminar Boundary Layer Solutions for Wedge-Type Flow over Convection and Transpiration Cooled Surfaces. N.A.C.A. T.N. 3588, 1955.Google Scholar
22. Staniforth, R. A Theoretical Note on Effusion Cooled Gas Turbine Blades. A.R.C. Current Paper 165, 1950.Google Scholar
23. Howe, J. T. and Mersman, W. A. Solutions of the Laminar Compressible Boundary-Layer Equations with Transpiration which are Applicable to the Stagnation Regions of Axi-Symmetric Blunt Bodies. N.A.S.A. T.N. D-12, 1959.Google Scholar