The Algerian Space Agency has been active in the field of microsatellite engineering for more than 15 years and has successfully developed microsatellites under several know-how transfer technology programs, six to date. This paper presents the flight results and lessons learned from the attitude determination and control system (ADCS) flown on the ALSAT-2B satellite, an Earth observation microsatellite, by analysing the behaviour of the satellite from the initial attitude acquisition through the coarse pointing mode then the nominal mode, where the payload is first tested, and finally the orbit control mode. The spacecraft was launched on 26 September 2016 and placed into a 670km Sun-synchronous orbit with a solar local time at an ascending node of 22:15. The ADCS performance presented here mainly focuses on the launch and early operation results. ALSAT-2B includes four reaction wheels in a pyramidal configuration, three gyros, three Sun sensors, three magneto-torquers, one magnetometer, and one star tracker for agile and accurate attitude control. In addition, a propulsion system based on four 1N hydrazine thrusters is also used on board the microsatellite. The main new development in this platform compared with previous ones of the same type is the fusion of the star tracker and measurements by the three gyroscopes into one gyrostellar estimator that was implemented for the first time on ALSAT-2B, and the pyramidal configuration of the wheels, aiming to increase the angular momentum. The results obtained from the early launch operations for different ADCS modes are very encouraging and fulfil all the requirements set during design and testing. Currently, the satellite has accomplished its fourth year in orbit and is still operational and producing high-quality images.