Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-09T15:26:47.190Z Has data issue: false hasContentIssue false

Quantitative flow diagnostics of shock trains by rainbow schlieren deflectometry

Published online by Cambridge University Press:  18 July 2022

T. Takeshita
Affiliation:
The University of Kitakyushu, Department of Mechanical Systems Engineering, Kitakyushu, Japan
R. Fukunaga
Affiliation:
The University of Kitakyushu, Department of Mechanical Systems Engineering, Kitakyushu, Japan
S. Nakao
Affiliation:
The University of Kitakyushu, Department of Mechanical Systems Engineering, Kitakyushu, Japan
Y. Miyazato*
Affiliation:
The University of Kitakyushu, Department of Mechanical Systems Engineering, Kitakyushu, Japan
K. Miki
Affiliation:
CFD Consulting, Cleveland, OH, USA
*
*Corresponding author. Email: [email protected]

Abstract

A new measurement technique to reconstruct the density field of the shock-wave/boundary-layer interaction (SWBLI) in a confined duct is proposed. With this technique, it is possible to quantitatively capture in detail the structures of the density field both in the regions of the shock-systems in the central core and boundary-layer flows near the duct wall concurrently. The novel feature of the proposed technique is to make use of the schlieren images with the rainbow filters of the vertical and horizontal cutoff settings and then to reconstruct the two-dimensional density field integrated over the line-of-sight direction using the corresponding filter calibration curves. The proposed technique is applied for the first time to a shock train in a constant-area straight duct under the upstream condition of the shock train: the freestream Mach number is 1.42, the incoming boundary layer thickness normalised by the duct half height is 0.175, and the corresponding unit Reynolds number $Re/m$ is $2.99 \times 10^7$ m-1. The calculated isopycnic field depicts the streamwise and transverse density variations inside the shock train, the mixing region after the shock train, and the boundary-layer of the interaction region. This technique is shown to be capable of identifying the locations of shocks in a shock train more precisely than a conventional approach measuring the static pressure distribution along the duct wall. In addition, various quantitative visual representations such as a shadowgraphy and a bright-field schlieren can be extracted from the density field acquired by the present approach, and the spatial evolution of the shape and strength of each shock constituting the shock train as well as the boundary layer flow properties can be quantitatively clarified.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gnani, F., Zare-Behtash, H. and Kontis, K. Pseudo-shock waves and their interactions in high-speed intakes, Prog. Aerosp. Sci., April 2016, 82, pp 3656.Google Scholar
Matsuo, K., Miyazato, Y. and Kim, H.D. Shock train and pseudo-shock phenomena in internal gas flows, Prog. Aerosp. Sci., 1999, 35(1), pp 33100.CrossRefGoogle Scholar
Carroll, B.F. and Dutton, J.C. Characteristics of multiple shock wave/turbulent boundary-layer interactions in rectangular ducts, J. Propuls. Power, 1990, 6(2), pp 186193.Google Scholar
Xiong, B., Fan, X.Q., Wang, Y. and Tao, Y. Experimental study on self-excited and forced oscillations of an oblique shock train, J. Spacecr Rockets, 2018, 55(3), pp 640647.Google Scholar
Hunt, R.L. and Gamba, M. Shock train unsteadiness characteristics, oblique-to-normal transition, and three-dimensional leading shock structure, AIAA J, 2018, 56(4), pp 15691587.CrossRefGoogle Scholar
Hou, W., Chang, J., Xie, Z., Wang, Y., Wu, L. and Bao, W. Behavior and flow mechanism of shock train self-excited oscillation influenced by background waves, Acta Astronaut., January 2020, 166, pp 2940.Google Scholar
Gawehn, T., Gülhan, A., Al-Hasan, N.S. and Schnerr, G.H. Experimental and numerical analysis of the structure of pseudo-shock systems in Laval nozzles with parallel side walls, Shock Waves, 2010, 20(4), pp 297306.Google Scholar
Grzona, A. and Olivier, H. Shock train generated turbulence inside a nozzle with a small opening angle, Exp. Fluids, 2011, 51(3), pp 621639.Google Scholar
Sugiyama, H., Arai, T., Abe, H., Takahashi, T. and Takayama, K. Flow mechanism of $\lambda$ -type pseudoshock eaves in a straight-square duct, Trans. Jpn. Soc. Mech. Eng., Ser. B, 1990, 56(552), pp 330335.Google Scholar
Koike, S., Suzuki, K., Kitamura, E., Hirota, M., Takita, K., Masuya, G.O. and Matsumoto, M. Measurement of vortices and shock waves produced by ramp and twin jets, J. Propuls. Power, 2006, 22(5), pp 10591067.CrossRefGoogle Scholar
Wernet, M.P. Application of Tomo-PIV in a large-scale supersonic jet flow facility, Exp. Fluids, 2016, 57(9), 144.CrossRefGoogle Scholar
Settles, G.S. Schlieren and Shadowgraph Techniques, Springer, 2001.Google Scholar
Settles, G.S. and Hargather, M.J. A review of recent developments in schlieren and shadowgraph techniques, Meas. Sci. Technol., 2017, 28(4), 042001.CrossRefGoogle Scholar
Sun, L.Q., Sugiyama, H., Mizobata, K. and Fukuda, K. Numerical and experimental investigations on the Mach 2 pseudo-shock wave in a square duct, J. Vis., 2003, 6(4), pp 363370.Google Scholar
Sun, L., Sugiyama, H., Mizobata, K., Minato, R. and Tojo, A. Numerical and experimental investigations on Mach 2 and 4 pseudo-shock waves in a square duct, Trans. Jpn. Soc. Aeronaut. Space Sci., 2004, 47(156), pp 124130.CrossRefGoogle Scholar
Morgan, B., Duraisamy, K. and Lele, S.K. Large-eddy simulations of a normal shock train in a constant-area isolator, AIAA J., 2014, 52(3), pp 539558.CrossRefGoogle Scholar
Cai, J., Zhou, J., Liu, S. and Lin, Z. Effects of dynamic backpressure on shock train motions in straight isolator, Acta Astronaut., December 2017, 141, pp 237247.CrossRefGoogle Scholar
Gnani, F., Zare-Behtash, H., White, C. and Kontis, K. Numerical investigation on three-dimensional shock train structures in rectangular isolators, Eur. J. Mech. B Fluids, 2018, 72, pp 586593.CrossRefGoogle Scholar
Fiévet, R., Koo, H., Raman, V. and Auslender, A.H. Numerical investigation of shock-train response to inflow boundary-layer variations, AIAA J, 2017, 55(9), pp 28882901.CrossRefGoogle Scholar
Gnani, F., Zare-Behtash, H., White, C. and Kontis, K. Effect of back-pressure forcing on shock train structures in rectangular channels, Acta Astronaut., April 2018, 145, pp 471481.Google Scholar
Nicolas, F., Donjat, D., Léon, O., Le Besnerais, G., Champagnat, F. and Micheli, F. 3D reconstruction of a compressible flow by synchronized multi-camera BOS, Exp Fluids, 2017, 58(5), 46.CrossRefGoogle Scholar
Takano, H., Kamikihara, D., Ono, D., Nakao, S., Yamamoto, H. and Miyazato, Y. Three-dimensional rainbow schlieren measurements in underexpanded sonic jets from axisymmetric convergent nozzles, J. Thermal Sci., 2016, 25(1), pp 7883.Google Scholar
Maeda, H., Fukuda, H., Kubo, K., Nakao, S., Ono, D. and Miyazato, Y. Structure of underexpanded supersonic jets from axisymmetric Laval nozzles, J. Flow Vis. Image Process., 2018, 25(1), pp 3346.Google Scholar
Mariani, R., Zang, B., Lim, H.D., Vevek, U.S., New, T.H. and Cui, Y.D. A comparative study on the use of Calibrated and Rainbow Schlieren techniques in axisymmetric supersonic jets, Flow Meas. Instrum., April 2019, 66, pp 218228.CrossRefGoogle Scholar
Mariani, R., Lim, H.D., Zang, B., Vevek, U.S., New, T.H. and Cui, Y.D. On the application of non-standard rainbow schlieren technique upon supersonic jets, J. Vis., 2020, 23(3), pp 383393.CrossRefGoogle Scholar
Nazari, A.Z., Ishino, Y., Ishiko, Y., Ito, F., Kondo, H., Yamada, R., Motohiro, T., Miyazato, Y. and Nakao, S. Multi-schlieren CT measurements of supersonic microjets from circular and square micro nozzles, J. Flow Control, Meas. Vis., 2020, 8(3), pp 77101.Google Scholar
Crown, J.C. Design of nozzles having continuous wall curvature, J. Aeronaut. Sci., 1952, 19(5), pp 358359.CrossRefGoogle Scholar
Takeshita, T., Nakao, S. and Miyazato, Y. Application of Mach-Zehnder interferometers for isolator shock trains, ACC J., 2019, 25(1), pp 6877.Google Scholar
Takeshita, T., Takano, H., Ono, D., Nakao, S. and Miyazato, Y. Rainbow schlieren visualization of shock trains in rectangular ducts, 23rd Conference of the International Scociety for Air Breathing Engines, 2017, 21452.Google Scholar
Matsuyama, A., Nakao, S., Ono, D., Miyazato, Y. and Kashitani, M. Two-dimensional quantitative visualization of isolator shock trains by rainbow schlieren deflectometry, EPJ Web of Conferences, 2018, 180, 02063.CrossRefGoogle Scholar
Agrawal, A.K. and Wanstall, C.T. Rainbow schlieren deflectometry for scalar measurements in fluid flows, J. Flow Vis. Image Process., 2018, 25(3–4), pp 329357 CrossRefGoogle Scholar
Atkin, C.J. and Squire, L.C. A study of the interaction of a normal shock wave with a turbulent boundary layer at Mach numbers between 1.30 and 1.55, Eur. J. Mech. B Fluids, 1992, 11(1), pp 93118.Google Scholar
Om, D. and Childs, M.E. Multiple transonic shock-wave/turbulent boundary-layer interaction in a circular duct, AIAA J., 1985, 23(10), pp 15061511.CrossRefGoogle Scholar
Carroll, B.F. and Dutton, J.C. Turbulence phenomena in a multiple normal shock wave/turbulent boundary-layer interaction, AIAA J., 1992, 30(1), pp 4348.Google Scholar
Yamane, R., Oshima, S., Nakamura, Y., Ishii, T. and Park, M.K. Numerical simulation of pseudoshock in straight channels, JSME Int. J. Ser. B: Fluids Ther. Eng., 1995, 38(4), pp 549554.Google Scholar
Tuchker, M. Approximate calculation of turbulent boundary-layer development in compressible flow, NACA, 1951, Technical Note No. 2337.Google Scholar
Gerhart, P.M., Gross, R.J. and Hochstein, J.I. Fundamentals of Fluid Mechanics, 2nd ed., Addison-Wesley Publishing Com., 1993, p 487.Google Scholar
Shapiro, A.H. The Dynamics and Thermodynamics of Compressible Flid Flow, Vol. 2. Ronald Press, New York, 1953, pp 159178.Google Scholar
Seddon, J. The flow produced by interaction of a turbulent boundary layer with a normal shock wave of strength sufficient to cause separation, Aero. Res. Counc., R&M 3502, 1960, pp 159178.Google Scholar
Matsuo, K., Miyazato, Y. and Kim, H.D. Mass-averaging pseudo-shock model in a straight flow passage, Proc. Inst. Mech. Eng. G J Aeros. Eng., 1999, 213(6), pp 365375.CrossRefGoogle Scholar
Sullins, G. and McLafferty, G. Experimental results of shock trains in rectangular ducts, 1992, AlAA Paper 92-5103.Google Scholar
Weiss, A., Grzona, A. and Olivier, H. Behavior of shock trains in a diverging duct, Exp. Fluids, 2010, 49(2), pp 355365.CrossRefGoogle Scholar
Liepmann, H.W. and Roshko, A. Elements of Gasdynamics. Dover Publishing, INC., Mineola, New York, 2001, pp 162163.Google Scholar
Coleman, H.W. and Steele, W.G. Experimentation, Validation, and Uncertainty Analysis for Engineers, 3rd ed. John Wiley & Sons, 2009.Google Scholar
Matsuo, K., Mochizuki, H., Miyazato, Y. and Gohya, M. Oscillatory characteristics of a pseudo-shock wave in a rectangular straight duct, JSME Int. J. Ser. B: Fluids Ther. Eng., 1993, 36(2), pp 222229.Google Scholar
Carroll, B.F., Lopez-Fernandez, P.A. and Dutton, J.C. Computations and experiments for a multiple normal shock/boundary-layer interaction, J. Propuls. Power, 1993, 9(3), pp 405411.CrossRefGoogle Scholar