No CrossRef data available.
Published online by Cambridge University Press: 27 January 2016
One of the aerospace design engineer’s goals aims to reduce drag for increased aircraft performance, in terms of range, endurance, or speed in the various flight regimes. To accomplish this, the designer must have rapid and accurate techniques for computing drag. At subsonic Mach numbers drag is primarily a sum of lift-induced drag and zero-lift drag. While lift-induced drag is easily and efficiently determined by a far field method, using the Trefftz plane analysis, the same cannot be said of zero-lift drag. Zero-lift drag (CD,0) usually requires consideration of the Navier-Stokes equations, the solution of which is as yet unknown except by using approximate numerical techniques with computational fluid dynamics (CFD). The approximate calculation of zero-lift drag from CFD is normally computed with so-called near-field techniques, which can be inaccurate and too time consuming for consideration in the design environment. This paper presents a technique to calculate zero-lift and boundary-layer drag in the subsonic regime that includes aeroelastic effects and is suitable for the design environment. The technique loosely couples a two-dimensional aerofoil boundary-layer model with a 3D aeroelastic solver to compute zero-lift drag. We show results for a rectangular wing (baseline), a swept wing, and a tapered wing. Then compare with a rectangular wing with variable thickness and camber, thinning out from the root to tip (spanwise direction), thus demonstrating the practicality of the technique and its utility for rapid conceptual design.