Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-23T19:50:42.946Z Has data issue: false hasContentIssue false

Multi-scale temporal characters mining for bird activities based on historical avian radar system datasets

Published online by Cambridge University Press:  01 February 2023

Q. Xu
Affiliation:
Research Institute of Civil Aviation Law, Regulation and Standardization, China Academy of Civil Aviation Science and Technology, Beijing, China
J. Liu*
Affiliation:
Research Institute for Frontier Science, Beihang University, Beijing, China
M. Su
Affiliation:
Guangxi Normal University, Guilin, China
W.S. Chen
Affiliation:
China Academy of Civil Aviation Science and Technology, Beijing, China
*
*Corresponding author. Email: [email protected]

Abstract

Avian radar systems are effective for wide-area bird detection and tracking, but application significances need further exploration. Existing radar data mining methods provide long-term functionalities, but they are problematic for bird activity modelling especially in temporal domain. This paper complements this insufficiency by introducing a temporal bird activity extraction and interpretation method. The bird behaviour is quantified as the activity degree which integrates intensity and uncertainty characters with an entropy weighing algorithm. The method is applicable in multiple temporal scales. Historical radar dataset from a system deployed in an airport is adopted for verification. Temporal characters demonstrate good consistency with understandings from local observers and ornithologists. Daily commuting and roosting characters of local birds are well reflected, evening bat activities are also extracted. Night migration activities are demonstrated clearly. Results indicate the proposed method is effective in temporal bird activity modelling and interpretation. Its integration with bird strike risk models might be more useful for airport safety management with wildlife interference.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

DeFusco, R.P., Hovan, M.J., Harper, J.T., & Heppard, K.A. North American Bird Strike Advisory, Colorado: US Air Force Academy, 2005.CrossRefGoogle Scholar
Huansheng, N., Weishi, C., Xia, M., & Jing, L. Bird-aircraft strike avoidance radar, IEEE Aerosp Electron Syst Mag, 2010, 25, pp 1928. doi: 10.1109/MAES.2010.5442150.Google Scholar
Weishi, C. Flying bird detection and hazard assessment for avian radar system, J Aerosp Eng, 2012, 25, (2), pp 246255. doi: 10.1061/(ASCE)AS.1943-5525.0000131.Google Scholar
Eleanor, S., Jacquelyn, R., Travis, L.D., et al. The effects of radar on avian behavior: Implications for wildlife management at airports, Appl Anim Behav Sci, 2015, 171, pp 241252. doi: 10.1016/j.applanim.2015.08.001.Google Scholar
Weishi, C. Spatial and temporal features selection for low-altitude target detection, Aerosp Sci Technol, 2015, 40, pp 171180. doi: 10.1016/j.ast.2014.11.004.Google Scholar
Weishi, C., Jia, L., & Jing, L. Classification of UAV and bird target in low-altitude airspace with surveillance radar data, Aeronaut J, 2019, 123, (1260), pp 191211. doi: 10.1017/aer.2018.158.Google Scholar
Weishi, C., Yifeng, H., & Xianfeng, L. Review on critical technology development of avian radar system. Aircr Eng Aerosp Technol, 2022, 94, (3), pp 445457. doi: 10.1108/AEAT-10-2020-0221.Google Scholar
Moon, J.R. Effects of birds on radar tracking systems, Edinburgh: Radar Conference, 2002, 300–304. doi: 10.1109/RADAR.2002.1174701.CrossRefGoogle Scholar
Vaughn, C.R. Birds and insects as radar targets: A review, Proc IEEE, 1985, 73, (2), pp 205227. doi: 10.1109/PROC.1985.13134.CrossRefGoogle Scholar
Avian Radar Systems. Florida, USA: DeTect, 2007.Google Scholar
Bird Aircraft Strike Hazard Services & Technologies. Florida, USA: DeTect, 2007.Google Scholar
Weishi, C., Yifeng, H., Xianfeng, L., et al. Analysis of bird situation around airports using avian radar, Aeronaut J, 2021, 125, (1294), pp 21492168. doi: 10.1017/aer.2021.57.Google Scholar
Huansheng, N., Weishi, C., & Wenming, L. Bird targets detection based on radar image. Chin J Electron, 2007, 16, (5), pp 754757.Google Scholar
Rahman, S., & Robertson, D.A. Classification of drones and birds using convolutional neural networks applied to radar micro-Doppler spectrogram images. IET Radar Sonar Navig 2020, 14, (5), pp 653661. doi: 10.1049/iet-rsn.2019.0493.CrossRefGoogle Scholar
Taha, B., & Shoufan, A. Machine learning-based drone detection and classification: State-of-the-art in research, IEEE Access, 2019, 7, pp 138669138682. doi: 10.1109/ACCESS.2019.2942944.CrossRefGoogle Scholar
Jia, L., Qunyu, X.U., & Weishi, C. Classification of bird and drone targets based on motion characteristics and random forest model using surveillance radar data, IEEE Access, 2021, 9, pp 160135160144. doi: 10.1109/ACCESS.2021.3130231.Google Scholar
Muhammad, A., Menouar, H., Eldeeb, A., et al. On the detection of unauthorized drones—Techniques and future perspectives: A review. IEEE Sens J, 2022, 22, (12), pp 1143911455. doi: 10.1109/JSEN.2022.3171293.Google Scholar
Huansheng, N., & Weishi, C. Bird strike risk evaluation at airports. Aircraft Engineering and Aerospace Technology, 2014, 86, (2), pp 129137. doi: 10.1108/AEAT-07-2012-0111.Google Scholar
Manuel, L., Rafael, C., Aurelio, B., et al. A predictive model for risk assessment on imminent bird strikes on airport areas, Aerosp. Sci. Technol., 2017, 62, pp 1930. doi: 10.1016/j.ast.2016.11.020.Google Scholar
Weishi, C. Flying bird detection and Hazard assessment for avian radar system, J Aerosp Eng, 2012, 25, (2), pp 246255. doi: 10.1061/(ASCE)AS.1943-5525.0000131.Google Scholar
John, A. A Heuristic risk assessment technique for bird strike management at airports, Risk Anal, 2006, 26, (3), pp 723729. doi: 10.1111/j.1539-6924.2006.00776.x.Google Scholar
Sidney, G., Ann-Marie, S., Dave, M., et al. Detecting bird movements with L-band avian radar and S-band dual-polarization Doppler weather radar, Remote Sens Ecol Conserv, 2019, 5, (3), pp 237246. doi: 10.1002/rse2.101.Google Scholar
Ommo, H.M., Robert, D., et al. Perspectives and challenges for the use of radar in biological conservation, Ecography, 2019, 42, (5), pp 912930. doi: 10.1111/ecog.04063.Google Scholar
Hans, G., Karen, L.K., Nadine, K., et al. Aeroecology meets aviation safety: early warning systems in Europe and the Middle East prevent collisions between birds and aircraft. Ecography, 2019, 42, (5), pp 899911. doi: 10.1111/ecog.04125.Google Scholar
Weishi, C., Yifeng, H., et al. Analysis of bird situation around airports using avian radar, Aeronaut J, 2021, 125, (1294), pp 21492168. doi: 10.1017/aer.2021.57.Google Scholar
Federal Aviation Administration. Advisory Circular (No. 150/5200-38), 2018.Google Scholar
Gerringer, M.B., Lima, S.L., & DeVault, T.L. Evaluation of an avian radar system in a mid-western landscape, Wildl Soc Bull, 2016, 40, (1), pp 150159. doi: 10.1002/wsb.614.CrossRefGoogle Scholar
Weishi, C. Interactive processing of radar target detection and tracking, Aircr Eng Aerosp Technol, 2018, 90, (9), pp 13371345. doi: 10.1108/AEAT-07-2016-0115.Google Scholar
Chilson, P.B., Frick, W.F., Stepanian, P.M., et al. Estimating animal densities in the aerosphere using weather radar: to Z or not to Z? Ecosphere, 2012, 3, (8), pp 119. doi: 10.1890/ES12-00027.1.CrossRefGoogle Scholar
Kranstauber, B, Bouten, W., Leijnse, H, Wijers, B.C., Verlinden, L., Shamoun-Baranes, J., & Dokter, A.M. High-resolution spatial distribution of bird movements estimated from a weather radar network. Remote Sens, 2020, 12, (4), p 635. doi: 10.3390/rs1204063.CrossRefGoogle Scholar
Balzanella, A., Rivoli, L., & Verde, R. Data stream summarization by histograms clustering, In Giudici, P., Ingrassia, S., & Vichi, M. (eds) Statistical Models for Data Analysis. Studies in Classification, Data Analysis, and Knowledge Organization, Springer, Heidelberg, 2013. doi: 10.1007/978-3-319-00032-9_4.CrossRefGoogle Scholar
Denton, A.M., & Wu, J. Data mining of vector–item patterns using neighborhood histograms. Knowl Inf Syst, 2009, 21, p 173. doi: 10.1007/s10115-009-0201-7.CrossRefGoogle Scholar
Rauch, J., Šimůnek, M. Data mining with histograms – A case study, In Esposito, F., Pivert, O., Hacid, MS., Rás, Z., Ferilli, S. (eds) Foundations of Intelligent Systems. ISMIS 2015. Lecture Notes in Computer Science, 9384. Springer, Cham, 2015. doi: 10.1007/978-3-319-25252-0_1.CrossRefGoogle Scholar
Coates, P.S., Casazza, M.L., Halstead, B.J., Fleskes, J.P., & Laughlin, J.A. Using avian radar to examine relationships among avian activity, bird strikes, and meteorological factors, Human–Wildlife Interactions, 2011, 5, (2), pp 249268. doi: 10.26077/nbzd-kn35Google Scholar
Mary, A. Bird forecasting by radar. Nature, 2018, 561, pp 314. doi: 10.1038/d41586-018-06688-4.Google Scholar
Fauvel, M., Chanussot, J., & Benediktsson, J.A. Decision fusion for the classification of urban remote sensing images, IEEE Trans Geosci Remote Sens, 2006, 44, (10), pp 28282838. doi: 10.1109/TGRS.2006.876708.CrossRefGoogle Scholar
Pal, N.R., & Bezdek, J.C. Measuring fuzzy uncertainty. IEEE Trans Fuzzy Syst, 1994, 2, (2), pp 107118. doi: 10.1109/91.277960.CrossRefGoogle Scholar
Dai, W. Quadratic entropy of uncertain variables. Soft Computing, 2018, 22, (3), pp 56995706. doi: 10.1007/s00500-017-2602-y.CrossRefGoogle Scholar
Jia, L., Ning, F., YongJun, X., & BaoFa, W. Multi-scale feature-based fuzzy-support vector machine classification using radar range profiles. IET Radar Sonar Navig, 2016, 10, (2), pp 370378. doi: 10.1049/iet-rsn.2015.0244.Google Scholar
Carmen, C., Katherine, A., Amy, M., et al. Automated detection of bird roosts using NEXRAD radar data and convolutional neural networks, Remote Sens Ecol Conserv, 2019, 5, (1), pp 2032. doi: 10.1002/rse2.92.Google Scholar
Weishi, C., Jie, Z., & Jing, L. Intelligent decision making with bird-strike risk assessment for airport bird repellent. Aeronaut J, 2018, 122, (1252), pp 9881002. doi: 10.1017/aer.2018.45.Google Scholar