Published online by Cambridge University Press: 04 July 2016
Increasingly stringent attitude stabilisation requirements are the current trend in both experimental and commercial satellites as is seen in the current Intelsat, ESRO and UK communication studies. These craft must be lightweight, compact and rugged during the launch phase but after mission capture such requirements no longer apply. The increasingly high power requirements of such craft are met by the use of large flexible solar arrays which are packed away during launch and unfurl when the craft becomes operational. For the three-axis stabilised craft being studied reaction jets are used to achieve the high pointing accuracy required. Such actuators may be hot or cold gas systems or in the future may be electric engines’. The broad spectral content of these actuators will inevitably excite modes of vibration in a wide range of frequencies. The influence of these highly resonant modes on the performance of on-board controllers, needing a relatively high bandwidth of 0-10 Hz, to achieve high pointing accuracy of up to a few seconds of arc may lead to design difficulties.