Article contents
Translation-Equivariant Matchings of Coin Flips on ℤd
Published online by Cambridge University Press: 01 July 2016
Abstract
Consider independent fair coin flips at each site of the lattice ℤd. A translation-equivariant matching rule is a perfect matching of heads to tails that commutes with translations of ℤd and is given by a deterministic function of the coin flips. Let ZΦ be the distance from the origin to its partner, under the translation-equivariant matching rule Φ. Holroyd and Peres (2005) asked, what is the optimal tail behaviour of ZΦ for translation-equivariant perfect matching rules? We prove that, for every d ≥ 2, there exists a translation-equivariant perfect matching rule Φ such that EZΦ2/3-ε < ∞ for every ε > 0.
Keywords
MSC classification
- Type
- Stochastic Geometry and Statistical Applications
- Information
- Copyright
- Copyright © Applied Probability Trust 2010
References
- 6
- Cited by