Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T19:21:38.049Z Has data issue: false hasContentIssue false

SIR epidemics on a scale-free spatial nested modular network

Published online by Cambridge University Press:  24 March 2016

Alberto Gandolfi*
Affiliation:
Università di Firenze and New York University Abu Dhabi
Lorenzo Cecconi*
Affiliation:
Università di Firenze
*
* Postal address: Dipartimento di Statistica, Informatica, Applicazioni G. Parenti, Università di Firenze, Viale Morgagni 59, 50134 Firenze, Italy. Email address: [email protected]
** Postal address: Dipartimento di Matematica e Informatica U. Dini, Università di Firenze, Viale Morgagni 67/A, 50134 Firenze, Italy. Email address: [email protected]

Abstract

We propose a class of random scale-free spatial networks with nested community structures called SHEM and analyze Reed–Frost epidemics with community related independent transmissions. We show that in a specific example of the SHEM the epidemic threshold may be trivial or not as a function of the relation among community sizes, distribution of the number of communities, and transmission rates.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Aiello, W.et al. (2008). A spatial web graph model with local influence regions. Internet Math. 5, 175196. CrossRefGoogle Scholar
[2]Albert, R., Jeong, H. and Barabási, A.-L. (1999). Internet: diameter of the world-wide web. Nature 401, 130131. Google Scholar
[3]Ball, F., Mollison, D. and Scalia-Tomba, G. (1997). Epidemics with two levels of mixing. Ann. Appl. Prob. 7, 4689. Google Scholar
[4]Ball, F., Sirl, D. and Trapman, P. (2010). Analysis of a stochastic SIR epidemic on a random network incorporating household structure. Math. Biosci. 224, 5373. CrossRefGoogle ScholarPubMed
[5]Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. Science 286, 509512. Google Scholar
[6]Bartoszyński, R. (1972/73). On a certain model of an epidemic. Zastos. Mat. 13, 139151. Google Scholar
[7]Becker, N. G. and Dietz, K. (1995). The effect of household distribution on transmission and control of highly infectious diseases. Math. Biosci. 127, 207219. Google Scholar
[8]Bollobás, B., Janson, S. and Riordan, O. (2007). The phase transition in inhomogeneous random graphs. Random Structures Algorithms 31, 3122. Google Scholar
[9]Britton, T. (2010). Stochastic epidemic models: a survey. Math. Biosci. 225, 2435. Google Scholar
[10]Britton, T., Deijfen, M., Lagerås, A. N. and Lindholm, M. (2008). Epidemics on random graphs with tunable clustering. J. Appl. Prob. 45, 743756. Google Scholar
[11]Costello, E. K.et al. (2009). Bacterial community variation in human body habitats across space and time. Science 326, 16941697. Google Scholar
[12]Daley, D. J. and Gani, J. (1999). Epidemic Modelling: An Introduction. Cambridge University Press. Google Scholar
[13]Dawson, D. A. and Gorostiza, L. G. (2007). Percolation in a hierarchical random graph. Commun. Stoch. Anal. 1, 2947. Google Scholar
[14]Dawson, D. A. and Gorostiza, L. G. (2013). Percolation in an ultrametric space. Electron J. Prob. 18, 26 pp. Google Scholar
[15]Deijfen, M., van der Hofstad, R. and Hooghiemstra, G. (2013). Scale-free percolation. Ann. Inst. H. Poincaré Prob. Statist. 49, 817838. Google Scholar
[16]Eriksen, K. A. and Hörnquist, M. (2001). Scale-free growing networks imply linear preferential attachment.Phys. Rev. E 65, 017102. Google Scholar
[17]Flaxman, A. D., Frieze, A. M. and Vera, J. (2007). A geometric preferential attachment model of networks. II. In Algorithms and Models for the Web-Graph (Lecture Notes Comput. Sci. 4863), Springer, Berlin, pp. 4155. Google Scholar
[18]Foley, R. and Gamble, C. (2009). The ecology of social transitions in human evolution. Phil. Trans. R. Soc. B 364, 32673279. Google Scholar
[19]Gandolfi, A. (2013). Percolation methods for SEIR epidemics on graphs. In Dynamic Models of Infectious Diseases, Vol. 2, Non Vector-Borne Diseases, eds V. S. H. Rao and R. Durvasula, Springer, New York, pp. 3158. Google Scholar
[20]Gandolfi, A., Keane, M. and de Valk, V. (1989). Extremal two-correlations of two-valued stationary one-dependent processes. Prob. Theory Relat. Fields 80, 475480. CrossRefGoogle Scholar
[21]Gregory, S. (2010). Finding overlapping communities in networks by label propagation. New J. Phys. 12, 103018. Google Scholar
[22]Grimmett, G. (1999). Percolation, 2nd edn. Springer, Berlin. CrossRefGoogle Scholar
[23]Jones, J. H. and Handcock, M. S. (2003). An assessment of preferential attachment as a mechanism for human sexual network formation. Proc. R. Soc. London B 270, 11231128. Google Scholar
[24]Jordan, J. (2010). Degree sequences of geometric preferential attachment graphs. Adv. Appl. Prob. 42, 319330. Google Scholar
[25]Kephart, J. O., Sorkin, G. B., Chess, D. M. and White, S. R. (1997). Fighting computer viruses. Scientific Amer. 277, 5661. Google Scholar
[26]Kermack, W. O. and McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proc. R. Soc. London A 115, 700721. Google Scholar
[27]Koval, V., Meester, R. and Trapman, P. (2012). Long-range percolation on the hierarchical lattice. Electron. J. Prob. 17, 21 pp. Google Scholar
[28]Kuulasmaa, K. and Zachary, S. (1984). On spatial general epidemics and bond percolation processes. J. Appl. Prob. 21, 911914. CrossRefGoogle Scholar
[29]Meester, R. and Trapman, P. (2011). Bounding basic characteristics of spatial epidemics with a new percolation model. Adv. Appl. Prob. 43, 335347. CrossRefGoogle Scholar
[30]Neal, P. (2003). SIR epidemics on a Bernoulli random graph. J. Appl. Prob. 40, 779782. Google Scholar
[31]Pastor-Satorras, R. and Vespignani, A. (2001). Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200. Google Scholar
[32]Sander, L. M., Warren, C. P. and Sokolov, I. M. (2003). Epidemics, disorder, and percolation. Physica A 325, 18. Google Scholar
[33]Schulman, L. S. (1983). Long range percolation in one dimension. J. Phys. A 16, L639L641. CrossRefGoogle Scholar
[34]Shearer, J. B. (1985). On a problem of Spencer. Combinatorica 5, 241245. Google Scholar
[35]Stokols, D. and Clitheroe, C. (2010). Environmental psychology. In Environmental Health: From Global to Local, ed. H. Frumkin, Jossey-Bass, San Francisco, CA, pp. 137171. Google Scholar
[36]Temmel, C. A. (2014). Shearer's measure and stochastic domination of product measures. J. Theoret. Prob. 27, 2240. CrossRefGoogle Scholar
[37]Trapman, J. P. (2006). On stochastic models for the spread of infections. Doctoral thesis. Vrije Universiteit. Google Scholar
[38]Tropman, J. E., Erlich, J. L. and Rothman, J. (eds) (2001). Tactics and Techniques of Community Intervention, 4th edn. Peacock, Itasca, IL. Google Scholar
[39]Xu, X.-J., Zhang, X. and Mendes, J. F. F. (2007). Impacts of preference and geography on epidemic spreading. Phys. Rev. E 76, 056109. CrossRefGoogle ScholarPubMed
[40]Yukich, J. E. (2006). Ultra-small scale-free geometric networks. J. Appl. Prob. 43, 665677. CrossRefGoogle Scholar
[41]Zhou, T., Fu, Z. and Wang, B. (2006). Epidemic dynamics on complex networks. Progr. Natural Sci. 16, 452457. Google Scholar