Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T01:42:30.143Z Has data issue: false hasContentIssue false

On the conditional distributions of spatial point processes

Published online by Cambridge University Press:  01 July 2016

François Caron*
Affiliation:
Université Bordeaux 1
Pierre Del Moral*
Affiliation:
Université Bordeaux 1
Arnaud Doucet*
Affiliation:
University of British Columbia
Michele Pace*
Affiliation:
Université Bordeaux 1
*
Postal address: INRIA Sud-Ouest and Institut de Mathématiques de Bordeaux, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence cedex, France.
Postal address: INRIA Sud-Ouest and Institut de Mathématiques de Bordeaux, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence cedex, France.
∗∗ Postal address: Department of Statistics, 333-6356 Agricultural Road, Vancouver BC, V6T 1Z2, Canada. Email address: [email protected]
Postal address: INRIA Sud-Ouest and Institut de Mathématiques de Bordeaux, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence cedex, France.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider the problem of estimating a latent point process, given the realization of another point process. We establish an expression for the conditional distribution of a latent Poisson point process given the observation process when the transformation from the latent process to the observed process includes displacement, thinning, and augmentation with extra points. Our original analysis is based on an elementary and self-contained random measure theoretic approach. This simplifies and complements previous derivations given in Mahler (2003), and Singh, Vo, Baddeley and Zuyev (2009).

Type
Stochastic Geometry and Statistical Applications
Copyright
Copyright © Applied Probability Trust 2011 

References

Daley, D. J. and Vere-Jones, D. (1988). An Introduction to the Theory of Point Processes, Springer, New York.Google Scholar
Lund, J. and Rudemo, M. (2000). Models for point processes observed with noise. Biometrika, 87, 235249.Google Scholar
Lund, J. and Thönnes, E. (2004). Perfect simulation and inference for point processes given noisy observations. Comput. Statist. 19, 317336.Google Scholar
Lund, J., Penttinen, A. and Rudemo, M. (1999). Bayesian analysis of spatial point patterns from noisy observations. Tech. Rep., Department of Tech. Rep. Google Scholar
Mahler, R. P. S. (2003). Multi-target Bayes filtering via first-order multitarget moments. IEEE Trans. Aerospace Electronic Systems 39, 11521178.Google Scholar
Singh, S. S., Vo, B.-N., Baddeley, A. and Zuyev, S. (2009). Filters for spatial point processes. SIAM J. Control Optimization 48, 22752295.Google Scholar
Stoyan, D., Kendall, W. S. and Mecke, J. (1995). Stochastic Geometry and Its Applications, 2nd edn. John Wiley, Chichester.Google Scholar
Van Lieshout, M. N. M. and Baddeley, A. J. (2002). Extrapolating and interpolating spatial patterns. In Spatial Cluster Modelling, Chapman & Hall/CRC, Boca Raton, FL.Google Scholar
Vo, B.-T., Vo, B.-N. and Cantoni, A. (2007). Analytic implementations of the cardinalized probability hypothesis density filter. IEEE Trans. Signal Process. 55, 35533567.CrossRefGoogle Scholar