Hostname: page-component-5f745c7db-szhh2 Total loading time: 0 Render date: 2025-01-07T00:23:28.219Z Has data issue: true hasContentIssue false

Line transects, covariance functions and set convergence

Published online by Cambridge University Press:  01 July 2016

A. J. Cabo*
Affiliation:
CWI, Amsterdam
A. J. Baddeley*
Affiliation:
University of Western Australia and University of Leiden
*
* Postal address: Lindenheuvel 16, 1217 JX Hilversum, The Netherlands.
** Postal address: Department of Mathematics, University of Western Australia, Nedlands, WA 6009, Australia.

Abstract

We define the ‘linear scan transform' G of a set in ℝd using information observable on its one-dimensional linear transects. This transform determines the set covariance function, interpoint distance distribution, and (for convex sets) the chord length distribution. Many basic integral-geometric formulae used in stereology can be expressed as identities for G. We modify a construction of Waksman (1987) to construct a metric η for ‘regular' subsets of ℝd defined as the L1 distance between their linear scan transforms. For convex sets only, η is topologically equivalent to the Hausdorff metric. The set covariance function (of a generally non-convex set) depends continuously on its set argument, with respect to η and the uniform metric on covariance functions.

Type
Stochastic Geometry and Statistical Applications
Copyright
Copyright © Applied Probability Trust 1995 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The original version of this paper was presented at the International Workshop on Stochastic Geometry, Stereology and Image Analysis held at the Universidad Internacional Menendez Pelayo, Valencia, Spain, on 21–24 September 1993.

References

Ambartzumian, R. V. (1982) Combinatorial Integral Geometry. Wiley, New York.Google Scholar
Borel, E. (1947) Principles et formules classiques du calcul des probabilités. Gauthier-Villars, Paris.Google Scholar
Cabo, A. J. (1989) Chord length distributions and characterization problems for convex plane polygons. Master's thesis, University of Amsterdam.Google Scholar
Crofton, M. W. (1885) Probability. Encyclopaedia Britannica, 9th edn, Vol. 29, pp. 768788.Google Scholar
Eggleston, H. G. (1958) Convexity. Cambridge University Press.CrossRefGoogle Scholar
Federer, H. (1969) Geometric Measure Theory. Springer-Verlag, Berlin.Google Scholar
Goodey, P. and Weil, W. (1992) The determination of convex bodies from the mean or random sections. Math. Proc. Camb. Phil. Soc. 112, 419430.CrossRefGoogle Scholar
Helgason, S., (1980) The Radon Transform. Progress in Mathematics 5. Birkhäuser, Basel.CrossRefGoogle Scholar
Jensen, E. B. and Gundersen, H. J. G. (1985) The stereological estimation of moments of particle volume. J. Appl. Prob. 22, 8298.CrossRefGoogle Scholar
Lešanovskya, A. and Rataj, J. (1990) Determination of compact sets in Euclidean spaces by the volume of their dilation. Proc. Conf. DIANA III, June 1990, Math. Inst, of CŠAV, Praha 1990, pp. 165177.Google Scholar
Mallows, C. L. and Clark, J. M. (1970) Linear intercept distributions do not characterize plane sets. J. Appl. Prob. 7, 240244.CrossRefGoogle Scholar
Mallows, C. L. and Clark, J. M. (1971) Corrections to ‘Linear intercept distributions do not characterize plane sets’, J. Appl. Prob. 8, 208209.CrossRefGoogle Scholar
Matérn, B. (1985) Spatial Variation. Springer-Verlag, Berlin.Google Scholar
Matheron, G. (1975) Random Sets and Integral Geometry. Wiley, New York.Google Scholar
Matheron, G. (1986) Le covariogramme géométrique des compacts convexes de 2. Technical Report 2/86, Centre de Géostatistique, Ecole des Mines de Paris, February 1986.Google Scholar
Miles, R. E. (1979) Some new integral formulae, with stochastic applications. J. Appl. Prob. 16, 592606.CrossRefGoogle Scholar
Miles, R. E. (1983) Stereology for embedded aggregates of not-necessarily-convex particles. Memoirs, Vol. 6, Department of Theoretical Statistics, University of Aarhus, Aarhus, pp. 127147.Google Scholar
Miles, R. E. (1985) A comprehensive set of stereological formulae for embedded aggregates of not-necessarily-convex particles. J. Microscopy 138, 115125.CrossRefGoogle Scholar
Nagel, W. (1991) Das geometrische Kovariogramm und verwandte Größen zweiter Ordnung. Habilitationsschrift, Friedrich-Schiller-Universität Jena.Google Scholar
Nagel, W. (1993) Orientation-dependent chord length distributions characterize convex polygons. J. Appl. Prob. 30, 730736.CrossRefGoogle Scholar
Pohl, W. F. (1980) The probability of linking of random closed curves. In Geometry Symposium Utrecht, ed. Looijenga, E. et al. pp. 113125. Lecture Notes in Mathematics 894, Springer-Verlag, Berlin.Google Scholar
Santaló, L. A. (1976) Integral Geometry and Geometric Probability. Wiley, New York.Google Scholar
Schmitt, M. (1993). On two inverse problems in mathematical morphology. In Mathematical Morphology in Image Processing, ed. Dougherty, E. R., pp. 151169. Marcel Dekker, New York.Google Scholar
Simon, L. (1983) Lectures on Geometric Measure Theory. Vol. 3, Proc. Centre for Math. Analysis, Australian National University.Google Scholar
Waksman, P. (1985) Plane polygons and a conjecture of Blaschke's. Adv. Appl. Prob. 17, 774793.CrossRefGoogle Scholar
Waksman, P. (1987) A stereological metric for plane domains. Adv. Appl. Math. 8, 3852.CrossRefGoogle Scholar