Published online by Cambridge University Press: 01 July 2016
We define the ‘linear scan transform' G of a set in ℝd using information observable on its one-dimensional linear transects. This transform determines the set covariance function, interpoint distance distribution, and (for convex sets) the chord length distribution. Many basic integral-geometric formulae used in stereology can be expressed as identities for G. We modify a construction of Waksman (1987) to construct a metric η for ‘regular' subsets of ℝd defined as the L1 distance between their linear scan transforms. For convex sets only, η is topologically equivalent to the Hausdorff metric. The set covariance function (of a generally non-convex set) depends continuously on its set argument, with respect to η and the uniform metric on covariance functions.
The original version of this paper was presented at the International Workshop on Stochastic Geometry, Stereology and Image Analysis held at the Universidad Internacional Menendez Pelayo, Valencia, Spain, on 21–24 September 1993.