Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T08:30:32.416Z Has data issue: false hasContentIssue false

Fluctuation theory in continuous time

Published online by Cambridge University Press:  01 July 2016

N. H. Bingham*
Affiliation:
Westfield College, University of London

Abstract

Our aim here is to give a survey of that part of continuous-time fluctuation theory which can be approached in terms of functionals of Lévy processes, our principal tools being Wiener-Hopf factorisation and local-time theory. Particular emphasis is given to one- and two-sided exit problems for spectrally negative and spectrally positive processes, and their applications to queues and dams. In addition, we give some weak-convergence theorems of heavy-traffic type, and some tail-estimates involving regular variation.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 1975 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bartlett, M. S. (1966) An Introduction to Stochastic Processes (2nd edn) Cambridge University Press.Google Scholar
Baxter, G. and Donsker, M. D. (1957) On the distribution of the supremum functional for processes with stationary independent increments. Trans. Amer. Math. Soc. 85, 7387.Google Scholar
Beneš, V. E. (1957) On queues with Poisson arrivals. Ann. Math. Statist. 28, 670677.Google Scholar
Beneš, V. E. (1960) Combinatory methods and stochastic Kolomogorov equations in the theory of queues. Trans. Amer. Math. Soc. 94, 282294.Google Scholar
Beneš, V. E. (1963) General Stochastic Processes in the Theory of Queues. Addison-Wesley, Reading, Mass.Google Scholar
Billingsley, P. (1968) Convergence of Probability Measures. Wiley, New York.Google Scholar
Bingham, N. H. (1971) Limit theorems for occupation-times of Markov processes. Z. Wahrscheinlichkeitsth. 17, 122.Google Scholar
Bingham, N. H. (1972) Limit theorems for regenerative phenomena, recurrent events and renewal theory. Z. Wahrscheinlichkeitsth. 21, 2044.Google Scholar
Bingham, N. H. (1973a) Maxima of sums of random variables and suprema of stable processes. Z. Wahrscheinlichkeitsth. 26, 273296.CrossRefGoogle Scholar
Bingham, N. H. (1973b) Limit theorems in fluctuation theory. Adv. Appl. Prob. 5, 554569.Google Scholar
Bingham, N. H. and Doney, R. A. (1974) Asymptotic properties of supercritical branching processes. I: The Galton-Watson process. J. Appl. Prob. 6, 711731.Google Scholar
Blumenthal, R. M. and Getoor, R. K. (1964) Local times for Markov processes. Z. Wahrscheinlichkeitsth. 3, 5074.CrossRefGoogle Scholar
Blumenthal, R. M. and Getoor, R. K. (1968) Markov Processes and Potential Theory. Academic Press, New York.Google Scholar
Blumenthal, R. M., Getoor, R. K. and Ray, D. (1961) On the distribution of first hits for the symmetric stable processes. Trans. Amer. Math. Soc. 99, 540554.Google Scholar
Borovkov, A. A. (1965) On the first-passage time for one class of processes with independent increments. Theory Prob. Appl. 10, 331334.Google Scholar
Borovkov, A. A. (1970) Factorisation identities and properties of the distribution of the supremum of sequential sums. Theory Prob. Appl. 15, 359402.Google Scholar
De Bruijn, N. G. (1959) Pairs of slowly oscillating functions occurring in asymptotic problems concerning the Laplace-transform. Nieuw Arch. Wiskunde III Ser., 7, 2026.Google Scholar
Callaert, H. and Cohen, J. W. (1972) A lemma on regular variation of a transient renewal function. Z. Wahrscheinlichkeitsth. 24, 275278.Google Scholar
Cohen, J. W. (1969) The Single-Server Queue. North-Holland, Amsterdam.Google Scholar
Cohen, J. W. (1972) On the tail of the stationary waiting-time distribution and limit theorems for the M/G/1 queue. Ann. Inst. H. Poincaré B, 8, 255263.Google Scholar
Cramèr, H. (1955) Collective Risk Theory: A Survey of the Theory from the Point of View of the Theory of Stochastic Processes. Nordiska Bokhandeln, Stockholm.Google Scholar
Daley, D. J. (1964) Single-server queueing processes with uniformly limited queueing time. J. Austral. Math. Soc. 4, 489505.Google Scholar
Dinges, H. (1963a) Ein verallgemeinertes Spiegelungsprinzip für den Prozess der Brownschen Bewegung. Z. Wahrscheinlichkeitsth. 1, 177196.Google Scholar
Dinges, H. (1963b) Eine kombinatorische Überlegung und ihre masstheoretische Erweiterung. Z. Wahrscheinlichkeitsth. 1, 278287.Google Scholar
Doetsch, G. (1937) Theorie und Anwendung der Laplace-Transformation. Springer, Berlin.Google Scholar
Emery, D. J. (1973) Exit problem for a spectrally positive process. Adv. Appl. Prob. 5, 498520.Google Scholar
Erdelyi, A. et al (1954) Tables of Integral Transforms (Bateman Manuscript Project Vol. 1). McGraw-Hill, New York.Google Scholar
Feller, W. (1959) On combinatorial methods in fluctuation theory. Probability and Statistics (The Harald Cramèr Volume, ed. Grenander, U.) 7591. Wiley, New York.Google Scholar
Feller, W. (1969) One-sided analogues of Karamata's regular variation. Enseignement Math. 15, 107122.Google Scholar
Feller, W. (1971) An Introduction to Probability Theory and its Applications, 2nd edn, Vol 2. Wiley, New York.Google Scholar
Fristedt, B. (1973) Sample functions of stochastic processes with stationary independent increments. Adv. Probability 3, 241396.Google Scholar
Gani, J. and Pyke, R. (1960) The content of a dam as the supremum of an infinitely-divisible process. J. Math. Mech. 9, 639651.Google Scholar
Gani, J. and Prabhu, N. U. (1963) A storage model with continuous infinitely-divisible inputs. Proc. Cambridge Phil. Soc. 59, 417429.CrossRefGoogle Scholar
Gaver, D. P. and Miller, R. G. (1962) Limit distributions for some storage problems. Studies in Applied Probability and Management Sciences, ed. Arrow, K. J., Karlin, S. and Scarf, H., Stanford University Press, 110126.Google Scholar
Gihman, I. I. and Skorohod, A. V. (1969) Introduction to the Theory of Random Processes. W. B. Saunders, Philadelphia.Google Scholar
Gradshteyn, I. S. and Ryzhik, I. V. (1965) Tables of Integrals, Series and Products, 4th edn. Academic Press, New York.Google Scholar
Greenwood, P. (1973) On Prabhu's factorisation of Lévy's generators. Z. Wahrscheinlichkeitsth. 27, 7577.Google Scholar
Gusak, D. V. and Korolyuk, V. S. (1974) The distribution of functionals of homogeneous processes with independent increments. Theory Prob. Math. Statist. 1, 5372.Google Scholar
Hoffman-J⊘rgensen, J. (1969) Markov sets. Math. Scand. 24, 145166.CrossRefGoogle Scholar
Horowitz, J. (1972) Semilinear Markov processes, subordinators and renewal theory. Z. Wahrscheinlichkeitsth. 24, 167193.Google Scholar
Ibragimov, I. A. and Linnik, Yu. V. (1971) Independent and Stationary Sequences of Random Variables. (English translation ed. Kingman, J. F. C.). Wolters-Noordhoff, Groningen.Google Scholar
Iglehart, D. L. and Whitt, W. (1970) Multiple-channel queues in heavy traffic I. Adv. Appl. Prob. 2, 150177.Google Scholar
Itô, K. and McKean, H. P. (1963) Brownian motion on a half-line. Illinois J. Math. 7, 181231.Google Scholar
Itô, K. and McKean, H. P. (1965) Diffusion Processes and their Sample Paths. Springer, Berlin.Google Scholar
Keilson, J. (1963) The first-passage time density for homogeneous skip-free walks on the continuum. Ann. Math. Statist. 34, 10031011.Google Scholar
Keilson, J. (1965) Green's Function Methods in Probability Theory. Griffin, London.Google Scholar
Kemperman, J. H. B. (1961) The Passage Problem for a Stationary Markov Chain. Statistical Research Monographs I. University of Chicago Press.Google Scholar
Kemperman, J. H. B. (1963) A Wiener-Hopf type method for a general random walk with a two-sided boundary. Ann. Math. Statist. 34, 11681193.Google Scholar
Kendall, D. G. (1951) Some problems in the theory of queues. J. R. Statist. Soc. B 13, 151185.Google Scholar
Kendall, D. G. (1957) Some problems in the theory of dams. J. R. Statist. Soc. B 19, 207212.Google Scholar
Kingman, J. F. C. (1961) The single-server queue in heavy traffic. Proc. Camb. Phil. Soc. 57, 902904.CrossRefGoogle Scholar
Kingman, J. F. C. (1962a) On queues in which customers are served in random order. Proc. Camb. Phil. Soc. 58, 7991.Google Scholar
Kingman, J. F. C. (1962b) The effect of queue discipline on the waiting-time variance. Proc. Camb. Phil. Soc. 58, 163164.Google Scholar
Kingman, J. F. C. (1963) On continuous-time models in the theory of dams. J. Austral. Math. Soc. 3, 480487.Google Scholar
Kingman, J. F. C. (1964) The stochastic theory of regenerative events. Z. Wahrscheinlichkeitsth. 2, 180224.Google Scholar
Kingman, J. F. C. (1966) On the algebra of queues. J. Appl. Prob. 3, 285326.Google Scholar
Kingman, J. F. C. (1966) An approach to the study of Markov processes. J. R. Statist. Soc. B 28, 417447.Google Scholar
Kingman, J. F. C. (1972) Regenerative Phenomena. Wiley, London.Google Scholar
Kingman, J. F. C. (1973a) Homecomings of Markov processes. Adv. Appl. Prob. 5, 66102.Google Scholar
Kingman, J. F. C. (1973b) An intrinsic description of local time. J. London Math. Soc. (2) 6, 725731.Google Scholar
Knight, F. B. (1971) The local time at zero of the reflected symmetric stable process. Z. Wahrscheinlichkeitsth. 19, 180190.Google Scholar
Krylov, N. V. and Yushekevitch, A. A. (1965) Markov random sets. Trans. Moscow Math. Soc. 13, 114135.Google Scholar
Lévy, P. (1948) Processus Stochastiques et Mouvement Brownien. Gauthier-Villars, Paris.Google Scholar
Lindvall, T. (1973) Weak convergence of probability measures and random functions in the function-space D[0, ∞). J. Appl. Prob. 10, 109121.Google Scholar
Maisonneuve, B. (1971) Ensembles régénératifs, temps locaux et subordinateurs. Lecture Notes in Mathematics 191, 147169.CrossRefGoogle Scholar
Meyer, P.-A. (1970) Ensembles régénératifs, d'après Hoffman-J⊘rgensen. Lecture Notes in Mathematics 124, 133140.Google Scholar
Moran, P. A. P. (1959) The Theory of Storage. Methuen, London.Google Scholar
Nevzorov, V. B. (1973) Joint distributions of random variables connected with fluctuations of stable processes. Theory Prob. Appl. 18, 161169.Google Scholar
Pecherskii, E. A. (1974) Some identities related to the exit of a random walk out of a segment and a semi-infinite interval. Theory Prob. Appl. 19, 104119.Google Scholar
Pecherskii, E. A. and Rogozin, B. A. (1969) On joint distributions of random variables associated with fluctuations of a process with independent increments. Theory Prob. Appl. 14, 410423.Google Scholar
Pegg, P. A. (1973) Some ratio identities for a class of skip-free random walks. J. Appl. Prob. 10, 213217.Google Scholar
Piterbarg, L. I. (1972) Limit theorems for Markov random sets. Theory Prob. Appl. 17, 426433.Google Scholar
Pitman, J. W. (1974) One-dimensional Brownian motion and the three-dimensional Bessel process. Adv. Appl: Prob. 7, 511526.Google Scholar
Port, S. C. (1963) An elementary approach to fluctuation theory. J. Math. Anal. Appl. 6, 109151.Google Scholar
Prabhu, N. U. (1961) Applications of storage theory to queues with Poisson arrivals. Ann. Math. Statist. 31, 475482.Google Scholar
Prabhu, N. U. (1970) Ladder-variables for a continuous-time stochastic process. Z. Wahrscheinlichkeitsth. 16, 157164.Google Scholar
Prabhu, N. U. (1972) Wiener-Hopf factorisation for convolution semigroups. Z. Wahrscheinlichkeitsth. 23, 103113.Google Scholar
Prabhu, N. U. and Rubinovitch, M. (1971a) On a regenerative phenomenon arising in a storage model. J. R. Statist. Soc. B 32, 354361.Google Scholar
Prabhu, N. U. and Rubinovitch, M. (1971b) On a continuous-time extension of Feller's lemma. Z. Wahrscheinlichkeitsth. 17, 220226.Google Scholar
Prabhu, N. U. and Rubinovitch, M. (1973) Further results for ladder-processes in continuous time. Stoch. Proc. Appl. 1, 151168.Google Scholar
Pyke, R. (1959) The supremum and infimum of the Poisson process. Ann. Math. Statist. 30, 568576.Google Scholar
Reich, E. (1958/9) On the integro-differential equation of Takács. I: Ann. Math. Statist. 29, 563570; II: Ann. Math. Statist. 30, 143–148.Google Scholar
Reich, E. (1961) Some combinatorial theorems for continuous-parameter stochastic processes. Math. Scand. 9, 243257.Google Scholar
Roes, P. B. M. (1970) The finite dam, I, II. J. Appl. Prob. 7, 316326, 599–616.Google Scholar
Rogozin, B. A. (1966) On the distribution of functionals related to boundary problems for processes with independent increments. Theory Prob. Appl. 11, 580591.Google Scholar
Rogozin, B. A. (1972) The distribution of the first hit for stable and asymptotically stable walks in an interval. Theory Prob. Appl. 17, 332338.Google Scholar
Rubinovitch, M. (1971) Ladder phenomena in stochastic processes with stationary independent increments. Z. Wahrscheinlichkeitsth. 20, 5874.Google Scholar
Skorohod, A. V. (1956) Limit theorems for stochastic processes. Theory Prob. Appl. 1, 261290.Google Scholar
Skorohod, A. V. (1957) Limit theorems Prob. stochastic processes with independent increments. Theory Prob. Appl. 2, 138171.Google Scholar
Skorohod, A. V. (1971) Theory of Random Processes (English translation ed. Doney, R. A.). British Library (Lending Division), Boston Spa, England.Google Scholar
Shtatland, E. S. (1965) On the distribution of the maximum of a process with independent increments. Theory Prob. Appl. 10, 483487.Google Scholar
Shtatland, E. S. (1966) The distribution of the time the maximum is achieved for processes with independent increments. Theory Prob. Appl. 11, 637642.Google Scholar
Speed, T. P. (1973) A note on random walks II. J. Appl. Prob. 10, 218222.Google Scholar
Takács, L. (1955) Investigation of waiting-time problems by reduction to Markov processes. Acta Math. Sci. Hungar. 6, 101129.Google Scholar
Takács, L. (1965) On the distribution of the supremum of stochastic processes with exchangeable increments. Trans. Amer. Math. Soc. 119, 367379.Google Scholar
Takács, L. (1966) The distribution of the content of a dam when the input process has stationary independent increments. J. Math. Mech. 15, 101112.Google Scholar
Takács, L. (1967a) Combinatorial Methods in the Theory of Stochastic Processes. Wiley, New York.Google Scholar
Takács, L. (1967b) The distribution of the content of finite dams. J. Appl. Prob. 4, 151161.Google Scholar
Tucker, H. G. (1965) On a necessary and sufficient condition that an infinitely-divisible distribution be absolutely continuous. Trans. Amer. Math. Soc. 118, 316330.Google Scholar
Veraverbeke, N. D. C. (1974) Fluctuation Theory of Random Walks and Processes with Stationary Independent Increments. Thesis, Catholic University of Louvain.Google Scholar
Watanabe, S. (1962) Stable processes with boundary conditions. J. Math. Soc. Japan 14, 170198.Google Scholar
Wendel, J. G. (1960) Order statistics of partial sums. Ann. Math. Statist. 31, 10341044.Google Scholar
Wendel, J. G. (1975) Left-continuous random walk and the Lagrange expansion. Amer. Math. Monthly, 82, 494499.Google Scholar
Whitt, W. (1971) Weak-convergence of first-passage times. J. Appl. Prob. 8, 417422.Google Scholar
Whitt, W. (1972) Complements to heavy-traffic limit theorems for the queue GI/G/1. J. Appl. Prob. 9, 185191.Google Scholar
Wiman, A. (1905) Über den Fundamentalsatz in der Theorie der Funktionen Eα (z). Acta Math. 29, 191201.Google Scholar
Zolotarev, V. M. (1957) Mellin-Stieltjes transform in probability theory. Theory Prob. Appl. 2, 433460.CrossRefGoogle Scholar
Zolotarev, V. M. (1961) The asymptotic behaviour of a class of infinitely-divisible laws. Theory Prob. Appl. 6, 303307.Google Scholar
Zolotarev, V. M. (1964) The first-passage time of a level and the behaviour at infinity for a class of processes with independent increments. Theory Prob. Appl. 9, 653664.Google Scholar
Zolotarev, V. M. (1965) A duality law in the class of infinitely-divisible laws. Selected Translations in Mathematical Statistics and Probability (I.M.S./A.M.S.) 5, 201209.Google Scholar