Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T08:04:36.406Z Has data issue: false hasContentIssue false

Acknowledgement of priority

Published online by Cambridge University Press:  01 July 2016

John Kent*
Affiliation:
University of Leeds

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © Applied Probability Trust 1979 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chung, K. L. and Walsh, J. B. (1969) To reverse a Markov process. Acta Math. 123, 225251.Google Scholar
Hunt, G. A. (1960) Markoff chains and Martin boundaries. Illinois J. Math. 4, 313340.Google Scholar
Meyer, P. A. (1971) Le retournement du temps, d'après Chung et Walsh. Séminaire de Probabilités V. Lecture Notes in Mathematics 191, Springer-Verlag, Berlin, 213236.Google Scholar
Nagasawa, M. (1961) The adjoint process of a diffusion with reflecting barrier. Kodai Math. Sem. Rep. 13, 235248.Google Scholar
Nagasawa, M. (1964) Time reversions of Markov processes. Nagoya Math. J. 24, 177204.Google Scholar
Nagasawa, M. and Maruyama, T. (1979) An application of time reversal of Markov processes to a problem of population genetics. Adv. Appl. Prob. 11, 457478.Google Scholar
Nagasawa, M. and Sato, K. (1962) Remarks to ‘The adjoint process of a diffusion with reflecting barrier’. Kodai Math. Sem. Rep. 14, 119122.Google Scholar
Nelson, E. (1958) The adjoint Markov processes. Duke Math. J. 25, 671690.Google Scholar