Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T06:37:33.702Z Has data issue: false hasContentIssue false

Percolation results for the continuum random cluster model

Published online by Cambridge University Press:  20 March 2018

Pierre Houdebert*
Affiliation:
Université Lille 1
*
* Current address: Centre de Mathématiques et Informatique (CMI), Aix-Marseille Université, Technopôle Château-Gombert, 39 rue F. Joliot Curie, 13453 Marseille Cedex 13, France. Email address: [email protected]

Abstract

The continuum random cluster model is a Gibbs modification of the standard Boolean model with intensity z > 0 and law of radii Q. The formal unnormalised density is given by q N cc , where q is a fixed parameter and N cc is the number of connected components in the random structure. We prove for a large class of parameters that percolation occurs for large enough z and does not occur for small enough z. We provide an application to the phase transition of the Widom–Rowlinson model with random radii. Our main tools are stochastic domination properties, a detailed study of the interaction of the model, and a Fortuin–Kasteleyn representation.

Type
Original Article
Copyright
Copyright © Applied Probability Trust 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Burton, R. M. and Keane, M. (1989). Density and uniqueness in percolation. Commun. Math. Phys. 121, 501505. Google Scholar
[2] Chayes, J. T., Chayes, L. and Kotecký, R. (1995). The analysis of the Widom–Rowlinson model by stochastic geometric methods. Commun. Math. Phys. 172, 551569. Google Scholar
[3] Coupier, D. and Dereudre, D. (2014). Continuum percolation for quermass interaction model. Electron. J. Prob. 19, 35. Google Scholar
[4] Dereudre, D. and Houdebert, P. (2015). Infinite volume continuum random cluster model. Electron. J. Prob. 20, 125. Google Scholar
[5] Georgii, H.-O. (2011). Gibbs Measures and Phase Transitions, 2nd edn. De Gruyter, Berlin. CrossRefGoogle Scholar
[6] Georgii, H.-O. and Häggström, O. (1996). Phase transition in continuum Potts models. Commun. Math. Phys. 181, 507528. CrossRefGoogle Scholar
[7] Georgii, H.-O. and Küneth, T. (1997). Stochastic comparison of point random fields. J. Appl. Prob. 34, 868881. Google Scholar
[8] Georgii, H.-O., Häggström, O. and Maes, C. (2001). The random geometry of equilibrium phases. In Phase Transitions and Critical Phenomena, Vol. 18, Academic Press, San Diego, CA, pp. 1142. Google Scholar
[9] Gouéré, J.-B. (2008). Subcritical regimes in the Poisson Boolean model of continuum percolation. Ann. Prob. 36, 12091220. CrossRefGoogle Scholar
[10] Grimmett, G. (2006). The Random-Cluster Model. Springer, Berlin. Google Scholar
[11] Jansen, S. (2016). Continuum percolation for Gibbsian point processes with attractive interactions. Electron. J. Prob. 21, 47. Google Scholar
[12] Liggett, T. M., Schonmann, R. H. and Stacey, A. M. (1997). Domination by product measures. Ann. Prob. 25, 7195. Google Scholar
[13] Meester, R. and Roy, R. (1996). Continuum Percolation. Cambridge University Press. Google Scholar
[14] Möller, J. and Helisová, K. (2008). Power diagrams and interaction processes for unions of discs. Adv. Appl. Prob. 40, 321347. Google Scholar
[15] Möller, J. and Helisová, K. (2010). Likelihood inference for unions of interacting discs. Scand. J. Statist. 37, 365381. CrossRefGoogle Scholar
[16] Nguyen, X.-X. and Zessin, H. (1979). Integral and differential characterizations of the Gibbs process. Math. Nachr. 88, 105115. Google Scholar
[17] Stucki, K. (2013). Continuum percolation for Gibbs point processes. Electron. Commun. Prob. 18, 67. Google Scholar
[18] Van den Berg, J. and Maes, C. (1994). Disagreement percolation in the study of Markov fields. Ann. Prob. 22, 749763. Google Scholar
[19] Widom, B. and Rowlinson, J. S. (1970). New model for the study of liquid-vapor phase transitions. J. Chem. Phys. 52, 16701684. Google Scholar