Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T13:57:52.843Z Has data issue: false hasContentIssue false

LES of Normally Impinging Elliptic Air-Jet Heat Transfer at Re=4400

Published online by Cambridge University Press:  09 January 2017

Yongping Li
Affiliation:
Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
Qizhao Lin
Affiliation:
Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
Zuojin Zhu*
Affiliation:
Faculty of Engineering Science, University of Science and Technology of China, Hefei, Anhui 230026, China
*
*Corresponding author. Email:[email protected] (Z. J. Zhu)
Get access

Abstract

Jet impingement induced heat transfer is an important issue in engineering science. This paper presents results of large eddy simulation (LES) of normally impinging elliptic air-jet heat transfer at a Reynolds number of 4400, with orifice-to-plate distance fixed to be 5 in the unit of jet nozzle effective diameter . The elliptic aspect ratio (a/b) is 3/2. While the target wall is heated under some condition of constant heat flux. The LES are carried out using dynamic subgrid model and Open-FOAM. The distributions ofmean velocity components, velocity fluctuations, and subgrid stresses in vertical and radial directions, and the Nusselt numbers involving heat transfer through the target wall are discussed. The comparison with existing experimental and numerical results shows good agreement.

Type
Research Article
Copyright
Copyright © Global-Science Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Jambunathan, K., Lai, E., Moss, M. A. and Button, B. L., A review of heat transfer data for single circular jet impingement, Int. J. Heat Fluid Flow, 13 (1992), pp. 106115.Google Scholar
[2] Viskanta, R., Heat transfer to impinging isothermal gas and flame jets, Exp. Thermal Fluid Sci., 6 (1993), pp. 111134.CrossRefGoogle Scholar
[3] Ichimiya, K. and Yoshida, Y., Oscillation effect of impingement surface on two-dimensional impingement heat transfer ASME J. Heat Transfer, 131 (2009), 011701.Google Scholar
[4] Martin, H., Heat and mass transfer between impinging gas jets and solid surfaces, in: James, PH (Eds), Advances in Heat Transfer, Elsevier, New York, 1977, pp. 160.Google Scholar
[5] Baughn, J. W. and Shimizu, S., Heat transfer measurements from a surface with uniform heat flux and an impinging jet, ASME J. Heat Transfer, 111(4) (1989), pp. 10961098.Google Scholar
[6] Cooper, D., Jackson, D. C., Launder, B. E. and Liao, G. X., Impinging jet studies for turbulence model assessment: I. Flow-field experiments, Int. J. Heat Mass Transfer, 36(10) (1993), pp. 26752684.Google Scholar
[7] Hussain, H. S. and Hussain, F., The elliptic whistler jet, J. Fluid Mech., 397 (1999), pp. 2344.CrossRefGoogle Scholar
[8] Geers, L. F. G., Tummers, M. J. and Hanjalic, K., Experimental investigation of impinging jet arrays, Exp. Fluids, 36 (2004), pp. 946958.Google Scholar
[9] Li, C. G. and Zhou, J. M., Experimental and numerical simulation study of heat transfer due to confined impinging circular jet, Chem. Eng. Technol., 30(10) (2007), pp. 13551361.Google Scholar
[10] Vipat, O., Feng, S. S., Kim, T., Pradeep, A. M. and Lu, T. J., Asymmetric entrainment effect on the local surface temperature of a flat plate heated by an obliquely impinging two-dimensional jet, Int. J. Heat Mass Transfer, 52 (2009), pp. 52505257.Google Scholar
[11] Yang, H. Q., Kim, T., Lu, T. J. and Ichimiya, K., Flow structure, wall pressure and heat transfer characteristics of impinging annular jet with/without steady swirling, Int. J. Heat Mass Transfer, 53 (2010), pp. 40924100.Google Scholar
[12] Zhang, Z. K. and Chua, L. P., Mixing due to a heated elliptic air jet, Int. J. Heat Mass Transfer, 55 (2012), pp. 45664579.Google Scholar
[13] Xu, Y., Feng, L. H. and Wang, J. J., Experimental investigation of a synthetic jet impinging on a fixed wall, Exp. Fluids, 54 (2013), 1512.Google Scholar
[14] Xing, Y. F. and Weigand, B., Optimum jet-to-plate spacing of inline impingement heat transfer for different crossflow schemes, ASME J. Heat Transfer, 135 (2013), 072201.Google Scholar
[15] Zhang, J. Z., Gao, S. and Tan, X. M., Convective heat transfer on a flat plate subjected to normally synthetic jet and horizontally forced flow, Int. J. Heat Mass Transfer, 57 (2013), pp. 321330.Google Scholar
[16] Xie, Y. H., Li, P., Lan, J. B. and Zhang, D., Flow and heat transfer characteristics of single jet impinging on dimpled surface, ASME: J. Heat Transfer, 135 (2013), 052201.Google Scholar
[17] Zhang, D., Qu, H. C., Lan, J. B., Chen, J. H. and Xie, Y. H., Flow and heat transfer characteristics of single jet impinging on protrusioned surface, Int. J. Heat Mass Transfer, 58 (2013), pp. 1828.Google Scholar
[18] Kang, C. and Liu, H. X., Turbulent features in the coherent central region of a plane water jet issuing into quiescent air, ASME J. Fluids Eng., 136 (2014), 081205.Google Scholar
[19] Yu, Y. Z., Zhang, J. Z. and Xu, H. S., Convective heat transfer by a row of confined air jets from round holes equipped with triangular tabs, Int. J. Heat Mass Transfer, 72 (2014), pp. 222233.Google Scholar
[20] Feng, S. S., Kuang, J. J., Wen, T., Lu, T. J. and Ichimiya, K., An experimental and numerical study of finned metal foam heat sinks under impinging air jet cooling, Int. J. Heat Mass Transfer, 77 (2014), pp. 10631074.Google Scholar
[21] Wang, K., Li, H. W. and Zhu, J. Q., Experimental study of heat transfer characteristic on jet impingement cooling with film extraction flow, Appl. Thermal Eng., 70 (2014), pp. 620629.Google Scholar
[22] Wang, X. L., Yan, H. B., Lu, T. J., Song, S. J. and Kim, T., Heat transfer characteristics of an inclined impinging jet on a curved surface in crossflow, ASME J. Heat Transfer, 136 (2014), 081702.CrossRefGoogle Scholar
[23] Zhang, C. J., Xu, G. Q., Li, H. W., Sun, J. N. and Cai, N., The effect of weak crossflow on the heat transfer characteristics of short-distance impinging cooling, ASME J. Heat Transfer, 136 (2014), 112201.Google Scholar
[24] Yu, Y. Z., Zhang, J. Z. and Shan, Y., Convective heat transfer of a row of air jets impingement excited by triangular tabs in a confined crossflow channel, Int. J. Heat Mass Transfer, 80 (2015), pp. 126138.CrossRefGoogle Scholar
[25] Craft, T. J., Graham, L. and Launder, B. E., Impinging jet studies for turbulence model assessment II. An examination of the performance of four turbulence models, Int. J. Heat Mass Transfer, 36(10) (1993), pp. 26852697.Google Scholar
[26] Park, T. S. and Sung, H. J., Development of a near-wall turbulence model and application to jet impingement heat transfer, Int. J. Heat Fluid Flow, 22(1) (2001), pp. 1018.CrossRefGoogle Scholar
[27] Zuckerman, N. and Lior, N., Jet impingement heat transfer: physics, correlations, and numerical modeling, Adv. Heat Transfer, 39 (2006), pp. 565631.Google Scholar
[28] Yu, M. Z., Chen, L. H., Jin, H. H. and Fan, J. R., Large eddy simulation of coherent structure of impinging jet, J. Thermal Sci., 14(2) (2005), pp. 150155.Google Scholar
[29] Rhea, S., Bini, M., Fairweather, M. and Jones, W. P., RANS modelling and LES of a single-phase, impinging plane jet, Comput. Chem. Eng., 33(8) (2009), pp. 13441353.Google Scholar
[30] Dutta, R., Dewan, A. and Srinivasan, B., Comparison of various integration to wall (ITW) RANS models for predicting turbulent slot jet impingement heat transfer, Int. J. Heat Mass Transfer, 65 (2013), pp. 750764.Google Scholar
[31] Zu, Y. Q., Yan, Y. Y. and Maltson, J., Numerical study on stagnation point heat transfer by jet impingement in a confined narrow gap, ASME J. Heat Transfer, 131 (2009), 094504.CrossRefGoogle Scholar
[32] Xu, P., Yu, B. M., Qiu, S. X., Poh, H. J. and Mujumdar, A. S., Turbulent impinging jet heat transfer enhancement due to intermittent pulsation, Int. J. Thermal Sci., 49 (2010), pp. 12471252.Google Scholar
[33] Liu, Z. and Feng, Z. P., Numerical simulation on the effect of jet nozzle position on impingement cooling of gas turbine blade leading edge, Int. J. Heat Mass Transfer, 54 (2011), pp. 49494959.Google Scholar
[34] Zhang, J. J., Xiong, Y. P., Qu, Z. G. and Tao, W. Q., Numerical study of flow and heat transfer performance of deflector under periodic jet impingement, J. Eng. Thermophys., 35(7) (2014), pp. 13951400.Google Scholar
[35] Yalhot, V. and Orszag, S. A., Renormalization group analysis of turbulence: I. basic theory, J. Sci. Comput., 1 (1986), pp. 151.Google Scholar
[36] Wang, P., Lv, J. Z., Bai, M. L., Wang, Y. Y. and Hu, C. Z., Numerical investigation of the flow and heat behaviours of an impinging jet, Int. J. Comput. Fluid Dyn., 28(6-10) (2014), pp. 301315.Google Scholar
[37] Olsson, M. and Fuchs, L., Large eddy simulations of a forced semiconfined circular impinging jet, Phys. Fluids, 10(2) (1998), pp. 476486.Google Scholar
[38] Voke, P. R. and Gao, S., Numerical study of heat transfer from an impinging jet, Int. J. Heat Mass Transfer, 41(4-5) (1998), pp. 671680.Google Scholar
[39] Cziesla, T., Biswas, G., Chattopadhyay, H. and Mitra, N. K., Large-eddy simulation of flow and heat transfer in an impinging slot jet, Int. J. Heat Fluid Flow, 22(5) (2001), pp. 500508.Google Scholar
[40] Tsubokura, M., Kobayashi, T., Taniguchi, N. and Jones, W. P., A numerical study on the eddy structures of impinging jets excited at the inlet, Int. J. Heat Fluid Flow, 24(4) (2003), pp. 500511.Google Scholar
[41] Beaubert, F. and Viazzo, S., Large eddy simulations of plane turbulent impinging jets at moderate Reynolds numbers, Int. J. Heat Fluid Flow, 24(4) (2003), pp. 512519.Google Scholar
[42] Hällqvist, T., Large eddy simulation of impinging jets with heat transfer, Technical Reports from Royal Institute of Technology, Department of Mechanics, 2006, S-100 44 Stockholm, Sweden.Google Scholar
[43] Yin, Z. Q. and Lin, J. Z., Numerical simulation of the formation of nanoparticles in an impinging twin-jet, J. Hydrodyn. Ser. B, 19(5) (2007), pp. 533541.Google Scholar
[44] Fan, J. Y., Zhang, Y. and Wang, D. Z., Large-eddy simulation of three domensional vortical structures for an impinging transverse jet in the near region, J. Hydrodyn. Ser. B, 19(3) (2007), pp. 314321.Google Scholar
[45] Popovac, M. and Hanjalic, K., Large-eddy simulations of flow over a jet-impinged wall-mounted cube in a cross stream, Int. J. Heat Fluid Flow, 28 (2007), pp. 13601378.CrossRefGoogle Scholar
[46] Hadz˘iabdic, M. and Hanjalic, K., Vortical structures and heat transfer in a round impinging jet, J. Fluid Mech., 596 (2008), pp. 221260.Google Scholar
[47] Uddin, N., Neumann, S. O., Weigand, B. and Younis, B. A., Large-eddy simulations and heat-flux modeling in a turbulent impinging jet, Numer. Heat Transfer Part A, 55 (2009), pp. 906930.Google Scholar
[48] Uddin, N., Turbulence Modelling of Complex Flows in CFD, Institute of Aerospace Thermodynamics, Universität Stuttgart, Ph.D Thesis, (2008), pp. 41–43.Google Scholar
[49] Nicoud, F., Toda, H. B., Cabrit, O., Bose, S. and Lee, J., Using singular values to build a subgrid-scale model for large eddy simulations, Phys. Fluids, 23 (2014), 085106.Google Scholar
[50] Germano, M., Piomelli, U., Moin, P. and Cabot, W., A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A, 3(7) (1991), pp. 17601765.Google Scholar
[51] Lodato, G., Vervisch, L. and Domingo, P., A compressible wall-adapting similarity mixed model for large-eddy simulation of the impinging round jet, Phys. Fluids, 21 (2009), 0351023.Google Scholar
[52] Dewan, A., Dutta, R. and Srinivasan, B., Recent trends in computation of turbulent jet impingement heat transfer, Heat Transfer Eng., 33(4-5) (2012), pp. 447460.Google Scholar
[53] Toda, H. B., Cabrit, O., Truffin, K., Bruneaux, G. and Nicoud, F., Assessment of subgrid-scale models with a large-eddy simulation-dedicated experimental database: The pulsatile impinging jet in turbulent cross-flow, Phys. Fluids, 26 (2014), 075108.Google Scholar
[54] Dairay, T., Fortun, V., Lamballais, E. and Brizzi, L. E., LES of a turbulent jet impinging on a heated wall using high-order numerical schemes, Int. J. Heat Fluid Flow 50 (2014), pp. 177187.Google Scholar
[55] Wu, W. and Piomelli, U., Large-eddy simulation of impinging jets with embedded azimuthal vortices, J. Turbulence, 16(1) (2015), pp. 4466.Google Scholar
[56] Li, Y. P., Lin, Q. Z., Ye, T. H. and Zhu, Z. J., Large eddy simulation of a normally impinging round air jet with heat transfer at a Reynolds number of 4400, in: Proceeding of Mechanical and Civil Engineering, ICMCE2612, December 13-14, 2014, Wuhan, China.Google Scholar
[57] Piomelli, U. and Liu, J. H., Large-eddy simulation of rotating channel flows using a locallized dynamic-model, Phys. Fluids, 7(4) (1995), pp. 839848.Google Scholar
[58] Smirnov, N. N., Betelin, V. B., Shagaliev, R. M., Nikitin, V. F., Belyakov, I. M., Deryuguin, Yu. N., Aksenov, S. V. and Korchazhkin, D. A., Hydrogen fuel rocket engines simulation using LOGOS code, Int. J. Hydrogen Energy, 39 (2014), pp. 1074810756.CrossRefGoogle Scholar
[59] Betelin, V. B., Shagaliev, R. M., Aksenov, S. V., Belyakov, I. M., Deryuguin, Yu. N., Korchazhkin, D. A., Kozelkov, A. S., Nikitin, V. F., Sarazov, A. V. and Zelenskiy, D. K., Mathematical simulation of hydrogen-Coxygen combustion in rocket engines using LOGOS code, Acta Astronautica, 96 (2014), pp. 5364.Google Scholar