Skip to main content Accessibility help
×
Hostname: page-component-6bf8c574d5-rwnhh Total loading time: 0 Render date: 2025-03-02T10:01:07.121Z Has data issue: false hasContentIssue false

Spontaneous Preterm Labour and Birth (Including Preterm Pre-labour Rupture of Membranes)

Published online by Cambridge University Press:  15 January 2025

Natasha L. Hezelgrave
Affiliation:
King's College London
Andrew Shennan
Affiliation:
King's College London

Summary

Spontaneous preterm birth remains the leading cause of neonatal death, and the second leading cause of mortality worldwide in children below five years of age. The causes of preterm birth are multifactorial, likely contributing to why significant progress in reducing the incidence has been slow. This Element contains the most up-to-date evidence regarding the aetiology, epidemiology, and management of pregnancies at risk of, or complicated by, spontaneous preterm birth and preterm pre-labour rupture of membranes. It concentrates largely on those aspects potentially amenable to preventative intervention (i.e. cervical dysfunction and premature uterine contractility), as well as strategies to improve outcomes for infants born prematurely.
Get access
Type
Element
Information
Online ISBN: 9781009508940
Publisher: Cambridge University Press
Print publication: 30 January 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Further Reading

Asztalos, EV, Murphy, KE, Matthews, SG. A growing dilemma: antenatal corticosteroids and long-term consequence. Am J Perinatol 2022; 39: 592600.Google Scholar
Blencowe, H, Cousens, S, Chou, D, et al. Born too soon: the global epidemiology of 15 million preterm births. Reprod Health 2013; 10 (Suppl. 1): S2.CrossRefGoogle ScholarPubMed
Carter, J, Seed, PT, Watson, HA, et al. Development and validation of prediction models for the QUiPP App v.2: a tool for predicting preterm birth in women with symptoms of threatened preterm labor. Ultrasound Obstet Gynecol 2019, 55(3): 357–67.Google Scholar
Evaluating Progestogens for Preventing Preterm Birth International Collaborative (EPPPIC): meta-analysis of individual participant data from randomised controlled trials. Lancet 2021; 397(10280): 1183–94.Google Scholar
Goldenberg, RL, Culhane, JF, Iams, JD, Romero, R. Epidemiology and causes of preterm birth. Lancet 2008; 371: 7584.CrossRefGoogle ScholarPubMed
Romero, R, Mazor, M, Munoz, H, et al. The preterm labor syndrome. Ann N Y Acad Sci 1994; 734: 414–29.CrossRefGoogle ScholarPubMed
Shennan, AH, Story, L; the Royal College of Obstetricians, Gynaecologists. Cervical cerclage. BJOG 2022; 129: 1178–210.Google Scholar

References

World Health Organization. WHO: recommended definitions, terminology and format for statistical tables related to the perinatal period and use of a new certificate for cause of perinatal deaths. Modifications recommended by FIGO as amended October 14, 1976. Acta Obstet Gynecol Scand 1977; 56: 247–53.Google Scholar
Goldenberg, RL, Culhane, JF, Iams, JD, Romero, R. Epidemiology and causes of preterm birth. Lancet 2008; 371: 7584.CrossRefGoogle ScholarPubMed
Cox, SM, Williams, ML, Leveno, KJ. The natural history of preterm ruptured membranes: what to expect of expectant management. Obstet Gynecol 1988; 71: 558–62.Google ScholarPubMed
Steer, P. The epidemiology of preterm labor. BJOG 2005; 112 (Suppl. 1): 13.CrossRefGoogle Scholar
Bates, E, Rouse, DJ, Mann, ML, et al. Neonatal outcomes after demonstrated fetal lung maturity before 39 weeks of gestation. Obstet Gynecol 2010; 116: 1288–95.CrossRefGoogle ScholarPubMed
Blencowe, H, Cousens, S, Chou, D, et al. Born too soon: the global epidemiology of 15 million preterm births. Reprod Health 2013; 10 (Suppl. 1): S2.CrossRefGoogle ScholarPubMed
Marlow, N. Full term: an artificial concept. Arch Dis Child Fetal Neonatal Ed 2012; 97: F158–9.CrossRefGoogle ScholarPubMed
Blencowe, H, Cousens, S, Oestergaard, MZ, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet 2012; 379: 2162–72.CrossRefGoogle ScholarPubMed
Lawn, J, Kerber, K, Enweronu-Laryea, C, Cousens, S. 3.6 million neonatal deaths: what is progressing and what is not? Semin Perinatol 2010; 34: 371–86.CrossRefGoogle ScholarPubMed
Chawanpaiboon, S, Vogel, JP, Moller, AB, et al. Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. Lancet Glob Health 2019; 7(1): e3746.CrossRefGoogle ScholarPubMed
Naeye, RL, Ross, SM. Amniotic fluid infection syndrome. Clin Obstet Gynecol 1982; 9: 593607.Google ScholarPubMed
Goncalves, LF, Chaiworapongsa, T, Romero, R. Intrauterine infection and prematurity. Ment Retard Dev Disabil Res Rev 2002; 8: 313.CrossRefGoogle ScholarPubMed
Romero, R, Mazor, M, Munoz, H, et al. The preterm labor syndrome. Ann N Y Acad Sci 1994; 734: 414–29.CrossRefGoogle ScholarPubMed
Romero, R, Dey, SK, Fisher, SJ. Preterm labor: one syndrome, many causes. Science 2014; 345: 760–5.CrossRefGoogle ScholarPubMed
Winkvist, A, Mogren, I, Högberg, U. Familial patterns in birth characteristics: impact on individual and population risks. Int J Epidemiol 1998; 27: 248–54.CrossRefGoogle ScholarPubMed
Shah, PS, Shah, V. Influence of the maternal birth status on offspring: a systematic review and meta-analysis. Acta Obstet Gynecol Scand 2009; 88: 1307–18. http://dx.doi.org/10.3109/00016340903358820.CrossRefGoogle ScholarPubMed
Strauss, JF, Romero, R, Gomez-Lopez, N, et al. Spontaneous preterm birth: advances toward the discovery of genetic predisposition. Am J Obstet Gynecol 2018; 218: 294314.e2. http://dx.doi.org/10.1016/j.ajog.2017.12.009.CrossRefGoogle ScholarPubMed
Esplin, MS, Manuck, TA, Varner, MW, et al. Cluster analysis of spontaneous preterm birth phenotypes identifies potential associations among preterm birth mechanisms. Am J Obstet Gynecol 2015; 213: 429.e1–9. http://dx.doi.org/10.1016/j.ajog.2015.06.011.CrossRefGoogle ScholarPubMed
Menon, R, Velez, DR, Thorsen, P, et al. Ethnic differences in key candidate genes for spontaneous preterm birth: TNF-alpha and its receptors. Hum Hered 2006; 62: 107–18.CrossRefGoogle ScholarPubMed
Moore, T, Hennessy, EM, Myles, J, et al. Neurological and developmental outcome in extremely preterm children born in England in 1995 and 2006: the EPICure studies. BMJ 2012; 345: e7961.CrossRefGoogle ScholarPubMed
Wood, N, Costeloe, K, Gibson, A, et al. The EPICure study: associations and antecedents of neurological and developmental disability at 30 months of age following extremely preterm birth. Arch Dis Child Fetal Neonatal Ed 2005; 90: F134–40.CrossRefGoogle ScholarPubMed
Mangham, LJ, Petrou, S, Doyle, LW, Draper, ES, Marlow, N. The cost of preterm birth throughout childhood in England and Wales. Pediatrics 2009; 123: e312–27.CrossRefGoogle ScholarPubMed
Butler, AS, Behrman, RE. Preterm Birth: Causes, Consequences, and Prevention. Washington, DC: National Academies Press, 2007.Google Scholar
Goldenberg, RL, Iams, JD, Mercer, BM, et al. The preterm prediction study: the value of new vs standard risk factors in predicting early and all spontaneous preterm births. NICHD MFMU Network. Am J Public Health 1998; 88: 233–8.Google Scholar
Mercer, BM, Goldenberg, RL, Moawad, AH, et al. The preterm prediction study: effect of gestational age and cause of preterm birth on subsequent obstetric outcome. Am J Obstet Gynecol 1999; 181: 1216–21.CrossRefGoogle ScholarPubMed
McManemy, J, Cooke, E, Amon, E, Leet, T. Recurrence risk for preterm delivery. Am J Obstet Gynecol 2007; 196: 576.e16.CrossRefGoogle ScholarPubMed
Crane, JM, Delaney, T, Hutchens, D. Transvaginal ultrasonography in the prediction of preterm birth after treatment for cervical intraepithelial neoplasia. Obstet Gynecol 2006; 107: 3744.CrossRefGoogle ScholarPubMed
Levine, LD, Sammel, MD, Hirshberg, A, Elovitz, MA, Srinivas, SK. Does stage of labor at time of cesarean delivery affect risk of subsequent preterm birth? Am J Obstet Gynecol 2015; 212: 360.e1–7. http://dx.doi.org/10.1016/j.ajog.2014.09.035.Google ScholarPubMed
Watson, HA, Ridout, A, Shennan, AH. Second stage cesarean as risk factor for preterm birth: how to manage subsequent pregnancies? Am J Obstet Gynecol 2018; 218: 367–8. http://dx.doi.org/10.1016/j.ajog.2017.11.589.CrossRefGoogle ScholarPubMed
Van Winsen, KD, Savvidou, MD, Steer, PJ. The effect of mode of delivery and duration of labor on subsequent pregnancy outcomes: a retrospective cohort study. BJOG 2021; 128(13): 2132–9. http://dx.doi.org/10.1111/1471-0528.16864.CrossRefGoogle ScholarPubMed
Homer, HA, Li, TC, Cooke, ID. The septate uterus: a review of management and reproductive outcome. Fertil Steril 2000; 73: 114.CrossRefGoogle ScholarPubMed
Brett, K, Strogatz, D, Savitz, D. Employment, job strain, and preterm delivery among women in North Carolina. Am J Public Health 1997; 87: 199204.CrossRefGoogle ScholarPubMed
Smith, LK, Draper, ES, Manktelow, BN, Doring, JS, Field, JA. Socioeconomic inequalities in very preterm birth rates. Arch Dis Child Fetal Neonatal Ed 2007; 92: F1114.CrossRefGoogle ScholarPubMed
Menon, R, Fortunato, SJ, Edwards, DR, Williams, SM. Association of genetic variants, ethnicity and preterm birth with amniotic fluid cytokine concentrations. Ann Hum Genet 2010; 74: 165–83.CrossRefGoogle ScholarPubMed
Heath, V, Southall, T, Souka, A, Novakov, A, Nikolaides, KH. Cervical length at 23 weeks of gestation: relation to demographic characteristics and previous obstetric history. Ultrasound Obst Gynecol 1998; 12: 304–11.CrossRefGoogle ScholarPubMed
Iams, JD, Goldenberg, RL, Meis, PJ, et al. The length of the cervix and the risk of spontaneous premature delivery. N Eng J Med 1996; 334: 567–73.CrossRefGoogle ScholarPubMed
To, M, Skentou, C, Chan, C, Zagaliki, A, Nikolaides, KH. Cervical assessment at the routine 23-week scan: standardizing techniques. Ultrasound Obst Gynecol 2001; 17: 217–19.CrossRefGoogle ScholarPubMed
Guzman, E, Walters, C, Ananth, C, et al. A comparison of sonographic cervical parameters in predicting spontaneous preterm birth in high-risk singleton gestations. Ultrasound Obst Gynecol 2001; 18: 204–10.CrossRefGoogle ScholarPubMed
Owen, J, Yost, N, Berghella, V, et al. Midtrimester endovaginal sonography in women at high risk for spontaneous preterm birth. JAMA 2001; 286: 1340–8.CrossRefGoogle ScholarPubMed
Cook, CM, Ellwood, D. The cervix as a predictor of preterm delivery in ‘at-risk’ women. Ultrasound Obst Gynecol 2000; 15: 109–13.CrossRefGoogle ScholarPubMed
Lim, AC, Hegeman, MA, Huis In ‘T Veld, MA, et al. Cervical length measurement for the prediction of preterm birth in multiple pregnancies: a systematic review and bivariate meta-analysis. Ultrasound Obst Gynecol 2011; 38: 1017.CrossRefGoogle ScholarPubMed
Goepfert, AR, Goldenberg, RL, Mercer, B, et al. The Preterm Prediction Study: quantitative fetal fibronectin values and the prediction of spontaneous preterm birth. Am J Obstet Gynecol 2000; 183: 1480–3.CrossRefGoogle ScholarPubMed
Abbott, DA, Hezelgrave, NL, Seed, PT, et al. Quantitative fetal fibronectin to predict preterm birth in asymptomatic women at high risk. Obstet Gynecol 2015; 125: 1168–76.CrossRefGoogle ScholarPubMed
Abbott, DS, Radford, SK, Seed, PT, Tribe, RM, Shennan, AH. Evaluation of a quantitative fetal fibronectin test for spontaneous preterm birth in symptomatic women. Am J Obstet Gynecol 2013; 208: 122.e1–6.CrossRefGoogle ScholarPubMed
Amsel, R, Totten, PA, Spiegel, CA, et al. Nonspecific vaginitis: diagnostic criteria and microbial and epidemiologic associations. Am J Med 1983; 74: 1422.CrossRefGoogle ScholarPubMed
Leitich, H, Kiss, H. Asymptomatic bacterial vaginosis and intermediate flora as risk factors for adverse pregnancy outcome. Best Pract Res Clin Obstet Gynaecol 2007; 21: 375–90.CrossRefGoogle Scholar
Brocklehurst, P, Gordon, A, Heatley, E, Milan, SJ. Antibiotics for treating bacterial vaginosis in pregnancy. Cochrane Database Syst Rev 2013; (1): CD000262.Google Scholar
Vermeulen, GM, Bruinse, HW. Prophylactic administration of clindamycin 2% vaginal cream to reduce the incidence of spontaneous preterm birth in women with an increased recurrence risk: a randomised placebo-controlled double-blind trial. Br J Obstet Gynaecol 1999; 106: 652–7.CrossRefGoogle Scholar
Shennan, A, Crawshaw, S, Briley, A, et al. A randomised controlled trial of metronidazole for the prevention of preterm birth in women positive for cervicovaginal fetal fibronectin: the PREMET Study. BJOG 2006; 113: 6574.Google ScholarPubMed
Kurkinen-Räty, M, Vuopala, S, Koskela, M, et al. A randomised controlled trial of vaginal clindamycin for early pregnancy bacterial vaginosis. BJOG 2000; 107: 1427–32.CrossRefGoogle ScholarPubMed
Nicolle, LE, Bradley, S, Colgan, R, et al. Infectious Diseases Society of America guidelines for the diagnosis and treatment of asymptomatic bacteriuria in adults. Clin Infect Dis 2005; 40: 643–54.CrossRefGoogle Scholar
Villar, J, Gulmezoglu, AM, De Onis, M. Nutritional and antimicrobial interventions to prevent preterm birth: an overview of randomized controlled trials. Obstet Gynecol Surv 1998; 53: 575–85.CrossRefGoogle ScholarPubMed
Smaill, FM, Vazquez, JC. Antibiotics for asymptomatic bacteriuria in pregnancy. Cochrane Database Syst Rev 2007; (8): CD000490.CrossRefGoogle Scholar
Bianchi-Jassir, F, Seale, AC, Kohli-Lynch, M, et al. Preterm birth associated with Group B streptococcus maternal colonization worldwide: systematic review and meta-analyses. Clin Infect Dis 2017; 65(Suppl. 2): S133–42.Google ScholarPubMed
Macnaughton, M, Chalmers, I, Dubowitz, V, et al. Final report of the Medical Research Council/Royal College of Obstetricians and Gynaecologists multicentre randomised trial of cervical cerclage. Br J Obstet Gynaecol 1993; 100: 516–23.Google Scholar
Shennan, AH, Story, L. The Royal College of Obstetricians, Gynaecologists. Cervical cerclage. BJOG 2022; 129: 1178–210.Google Scholar
American College of Obstetricians and GynecologistsCommittee on Practice Bulletins – Obstetrics. Practice bulletin no. 142: cerclage for the management of cervical insufficiency. Obstet Gynecol 2014; 123: 372–9. http://dx.doi.org/10.1097/01.AOG.0000443276.68274.cc.Google Scholar
To, MS, Alfirevic, Z, Heath, VC, et al. Cervical cerclage for prevention of preterm delivery in women with short cervix: randomised controlled trial. Lancet 2004; 363: 1849–53.CrossRefGoogle ScholarPubMed
Berghella, V, Odibo, AO, To, MS, Rust, OA, Althusius, SM. Cerclage for short cervix on ultrasonography: meta-analysis of trials using individual patient-level data. Obstet Gynecol 2005; 106: 181–9.CrossRefGoogle ScholarPubMed
Althuisius, SM, Dekker, GA, Hummel, P, van Geijn, HP. Cervical incompetence prevention randomized cerclage trial: emergency cerclage with bed rest versus bed rest alone. Am J Obstet Gynecol 2003; 189: 907–10.CrossRefGoogle ScholarPubMed
Chandiramani, M, Shennan, AH. Premature cervical change and the use of cervical cerclage. Fetal Maternal Med Rev 2007; 18: 2552.CrossRefGoogle Scholar
Odibo, AO, Berghella, V, To, MS, et al. Shirodkar versus McDonald cerclage for the prevention of preterm birth in women with short cervical length. Am J Perinatol 2007; 24: 5560.CrossRefGoogle ScholarPubMed
Shennan, A, Chandiramani, M, Bennett, P, et al. MAVRIC: a multicentre randomised controlled trial of transabdominal versus transvaginal cervical cerclage. Am J Obstet Gynecol 2019; 222(3): 261.e1–9. http://dx.doi.org/10.1016/j.ajog.2019.09.040.Google Scholar
Hodgetts Morton, V, Toozs-Hobson, P, Moakes, CA, et al. Monofilament suture versus braided suture thread to improve pregnancy outcomes after vaginal cervical cerclage (C-STICH): a pragmatic randomised, controlled, phase 3, superiority trial. Lancet 2022; 400(10361): 1426–36.CrossRefGoogle ScholarPubMed
Evaluating Progestogens for Preventing Preterm birth International Collaborative (EPPPIC): meta-analysis of individual participant data from randomised controlled trials. Lancet 2021; 397(10280): 1183–94.Google Scholar
Blackwell, SC, Gyamfi-Bannerman, C, Biggio, JR Jr, et al. 17-OHPC to Prevent Recurrent Preterm Birth in Singleton Gestations (PROLONG Study): a multicenter, international, randomized double-blind trial. Am J Perinatol 2020; 37(2): 127–36. http://dx.doi.org/10.1055/s-0039-3400227.Google ScholarPubMed
Meis, PJ, Klebanoff, M, Thom, E, et al. Prevention of recurrent preterm delivery by 17 alpha-hydroxyprogesterone caproate. N Engl J Med 2003; 348: 2379–85.CrossRefGoogle ScholarPubMed
Keirse, MJ. Progesterone and preterm: seventy years of ‘deja vu’ or ‘still to be seen’? Birth 2004; 31: 230–5.CrossRefGoogle ScholarPubMed
Iams, JD, Newman, RB, Thom, EA, et al. Frequency of uterine contractions and the risk of spontaneous preterm delivery. N Eng J Med 2002; 346: 250–5.CrossRefGoogle ScholarPubMed
Romero, R, Yeo, L, Chaemsaithong, P, Chaiworapongsa, T, Hassan, SS. Progesterone to prevent spontaneous preterm birth. Semin Fetal Neonatal Med 2014; 19: 1526.CrossRefGoogle ScholarPubMed
Hassan, SS, Romero, R, Vidyadhari, D, et al.; PREGNANT trial. Vaginal progesterone reduces the rate of preterm birth in women with a sonographic short cervix: a multicenter, randomized, double-blind, placebo-controlled trial. Ultrasound Obstet Gynecol 2011; 38: 1831. http://dx.doi.org/10.1002/uog.9017.CrossRefGoogle Scholar
Conde-Agudelo, A, Romero, R. Does vaginal progesterone prevent recurrent preterm birth in women with a singleton gestation and a history of spontaneous preterm birth? Evidence from a systematic review and meta-analysis. Am J Obstet Gynecol 2022; 227(3): 440–61.e2. http://dx.doi.org/10.1016/j.ajog.2022.04.023.Google Scholar
Rode, L, Klein, K, Nicolaides, K, Krampl-Bettelheim, E, Tabor, A. Prevention of preterm delivery in twin gestations (PREDICT): a multicenter, randomized, placebo-controlled trial on the effect of vaginal micronized progesterone. Ultrasound Obstet Gynecol 2011; 38: 272–80.Google ScholarPubMed
Norman, JE, Mackenzie, F, Owen, P, et al. Progesterone for the prevention of preterm birth in twin pregnancy (STOPPIT): a randomised, double-blind, placebo-controlled study and meta-analysis. Lancet 2009; 373: 2034–40.CrossRefGoogle ScholarPubMed
Wood, S, Ross, S, Tang, S, et al. Vaginal progesterone to prevent preterm birth in multiple pregnancy: a randomized controlled trial. J Perinat Med 2012; 40: 593–9.CrossRefGoogle ScholarPubMed
Serra, V, Perales, A, Meseguer, J, et al. Increased doses of vaginal progesterone for the prevention of preterm birth in twin pregnancies: a randomised controlled double-blind multicentre trial. BJOG 2013; 120: 50–7.CrossRefGoogle ScholarPubMed
Conde-Agudelo, A, Romero, R, Hassan, SS, Yeo, L. Transvaginal sonographic cervical length for the prediction of spontaneous preterm birth in twin pregnancies: a systematic review and metaanalysis. Am J Obstet Gynecol 2010; 203: 128.e112.CrossRefGoogle ScholarPubMed
Goya, M, Pratcorona, L, Merced, C, et al. Cervical pessary in pregnant women with a short cervix (PECEP): an open-label randomised controlled trial. Lancet 2012; 379: 1800–6.CrossRefGoogle Scholar
Nicolaides, KH, Syngelaki, A, Poon, LC, et al. A randomized trial of a cervical pessary to prevent preterm singleton birth. N Engl J Med 2016; 374(11): 1044–52. http://dx.doi.org/10.1056/NEJMoa1511014.CrossRefGoogle ScholarPubMed
Hui, SY, Chor, CM, Lau, TK, Lao, TT, Leung, TY. Cerclage pessary for preventing preterm birth in women with a singleton pregnancy and a short cervix at 20 to 24 weeks: a randomized controlled trial. Am J Perinatol 2013; 30: 283–8.Google Scholar
Jin, XH, Li, D, Huang, LL. Cervical pessary for prevention of preterm birth: a meta-analysis. Sci Rep 2017; 7:: 42560. http://dx.doi.org/10.1038/srep42560CrossRefGoogle ScholarPubMed
Norman, JE, Norrie, J, MacLennan, G, et al. The Arabin pessary to prevent preterm birth in women with a twin pregnancy and a short cervix: the STOPPIT 2 RCT. Health Technol Assess 2021; 25(44): 166.Google Scholar
Watson, HA, Seed, PT, Carter, J, et al. Development and validation of the predictive models for the QUiPP App v.2: a tool for predicting preterm birth in high-risk asymptomatic women. Ultrasound Obstet Gynecol 2020; 55(3): 348–56. http://dx.doi.org/10.1002/uog.20401.CrossRefGoogle Scholar
Carter, J, Seed, PT, Watson, HA, et al. Development and validation of prediction models for the QUiPP App v.2: a tool for predicting preterm birth in women with symptoms of threatened preterm labor. Ultrasound Obstet Gynecol 2020; 55(3): 357–67. http://dx.doi.org/10.1002/uog.20422.CrossRefGoogle ScholarPubMed
Watson, H, Carlisle, N, Seed, PT, et al. Evaluating the use of the QUiPP app and its impact on the management of threatened preterm labor: a cluster randomised trial. PLoS Med 2021; 18(7): e1003689.CrossRefGoogle ScholarPubMed
Akercan, F, Kazandi, M, Sendag, F, et al. Value of cervical phosphorylated insulin like growth factor binding protein-1 in the prediction of preterm labor. J Reprod Med 2004; 49: 368–72.Google ScholarPubMed
Cooper, S, Lange, I, Wood, S, et al. Diagnostic accuracy of rapid phIGFBP-I assay for predicting preterm labor in symptomatic patients. J Perinatol 2011; 32: 460–5.Google ScholarPubMed
Petrunin, D, Griaznova, IM, Petrunina, I, Tatarinov, IS. Immunochemical identification of organ specific human placental alpha-1-globulin and its concentration in amniotic fluid. Akush Ginekol (Mosk) 1977; 1: 62–4.Google Scholar
Nikolova, T, Bayev, O, Nikolova, N, di Renzo, G. Evaluation of a novel placental alpha microglobulin-1 (PAMG-1) test to predict spontaneous preterm delivery. J Perinat Med 2014; 42: 473–7.CrossRefGoogle ScholarPubMed
Fuchs, I, Henrich, W, Osthues, K, Dudenhausen, JW. Sonographic cervical length in singleton pregnancies with intact membranes presenting with threatened preterm labor. Ultrasound Obst Gynecol 2004; 24: 554–7.CrossRefGoogle ScholarPubMed
Lewis, DF, Major, CA, Towers, CV, et al. Effects of digital vaginal examinations on latency period in preterm premature rupture of membranes. Obstet Gynecol 1992; 80: 630–4.Google ScholarPubMed
Alexander, JM, Mercer, BM, Miodovnik, M, et al. The impact of digital cervical examination on expectantly managed preterm rupture of membranes. Am J Obstet Gynecol 2000; 183: 1003–7.CrossRefGoogle ScholarPubMed
Friedman, ML, McElin, TW. Diagnosis of ruptured fetal membranes: clinical study and review of the literature. Am J Obstet Gynecol 1969; 104: 544–50.CrossRefGoogle ScholarPubMed
van der Ham, DP, van Teeffelen, AS, Mol, BW. Prelabor rupture of membranes: overview of diagnostic methods. Curr Opin Obstet Gynecol 2012; 24: 408–12.CrossRefGoogle ScholarPubMed
Abdelazim, IA, Makhlouf, HH. Placental alpha microglobulin-1 (AmniSure test) versus insulin-like growth factor binding protein-1 (Actim PROM test) for detection of premature rupture of fetal membranes. J Obstet Gynaecol Res 2013; 39: 1129–36.CrossRefGoogle ScholarPubMed
Sosa, CG, Herrera, E, Restrepo, JC, Strauss, A, Alonso, J. Comparison of placental alpha microglobulin-1 in vaginal fluid with intra-amniotic injection of indigo carmine for the diagnosis of rupture of membranes. J Perinat Med 2014; 42: 611–16.CrossRefGoogle ScholarPubMed
Lee, SM, Romero, R, Park, JW, et al. The clinical significance of a positive Amnisure test in women with preterm labor and intact membranes. J Matern Fetal Neonatal Med 2012; 25: 1690–8.Google ScholarPubMed
Palacio, M, Kühnert, M, Berger, R, Larios, CL, Marcellin, L. Meta-analysis of studies on biochemical marker tests for the diagnosis of premature rupture of membranes: comparison of performance indexes. BMC Pregnancy Childbirth 2014; 14: 183. http://dx.doi.org/10.1186/1471-2393-14-183.CrossRefGoogle ScholarPubMed
Ramsey, PS, Lieman, JM, Brumfield, CG, Carlo, W. Chorioamnionitis increases neonatal morbidity in pregnancies complicated by preterm premature rupture of membranes. Am J Obstet Gynecol 2005; 192: 1162–6.CrossRefGoogle ScholarPubMed
van de Laar, R, van der Ham, DP, Oei, SG, et al. Accuracy of C-reactive protein determination in predicting chorioamnionitis and neonatal infection in pregnant women with premature rupture of membranes: a systematic review. Eur J Obstet Gynecol Reprod Biol 2009; 147: 124–9.CrossRefGoogle ScholarPubMed
Trochez-Martinez, RD, Smith, P, Lamont, RF. Use of C-reactive protein as a predictor of chorioamnionitis in preterm prelabor rupture of membranes: a systematic review. BJOG 2007; 114: 796801.CrossRefGoogle ScholarPubMed
Waters, TP, Mercer, BM. The management of preterm premature rupture of the membranes near the limit of fetal viability. Am J Obstet Gynecol 2009; 201: 230–40.CrossRefGoogle ScholarPubMed
Lewis, DF, Robichaux, AG, Jaekle, RK, et al. Expectant management of preterm premature rupture of membranes and nonvertex presentation: what are the risks? Am J Obstet Gynecol 2007; 196: 566.e1–5.CrossRefGoogle ScholarPubMed
Buchanan, SL, Crowther, CA, Levett, KM, Middleton, P, Morris, J. Planned early birth versus expectant management for women with preterm prelabor rupture of membranes prior to 37 weeks’ gestation for improving pregnancy outcome. Cochrane Database Syst Rev 2010; (3): CD004735.CrossRefGoogle Scholar
van der Ham, DP, Nijhuis, JG, Mol, BW, et al. Induction of labor versus expectant management in women with preterm prelabor rupture of membranes between 34 and 37 weeks (the PPROMEXIL-trial). BMC Pregnancy Childbirth 2007; 7: 11.CrossRefGoogle ScholarPubMed
van der Ham, DP, van der Heyden, JL, Opmeer, BC, et al. Management of late-preterm premature rupture of membranes: the PPROMEXIL-2 trial. Am J Obstet Gynecol 2012; 207: 276.e110.CrossRefGoogle ScholarPubMed
Morris, JM, Roberts, CL, Bowen, JR, et al. PPROMT Collaboration. Immediate delivery compared with expectant management after preterm pre-labour rupture of the membranes close to term (PPROMT trial): a randomised controlled trial. Lancet 2016; 387(10017): 444–52.CrossRefGoogle Scholar
Tajik, P, van der Ham, DP, Zafarmand, MH, et al. Using vaginal Group B streptococcus colonisation in women with preterm premature rupture of membranes to guide the decision for immediate delivery: a secondary analysis of the PPROMEXIL trials. BJOG 2014; 121: 1263–72.CrossRefGoogle ScholarPubMed
Bond, DM, Middleton, P, Levett, KM, et al. Planned early birth versus expectant management for women with preterm prelabor rupture of membranes prior to 37 weeks’ gestation for improving pregnancy outcome. Cochrane Database Syst Rev 2017; 3(3): CD004735. http://dx.doi.org/10.1002/14651858.CD004735.pub4.Google ScholarPubMed
Hannah, ME, Ohlsson, A, Farine, D, et al. Induction of labor compared with expectant management for prelabor rupture of the membranes at term. TERMPROM Study Group. N Engl J Med 1996; 334: 1005–10.Google ScholarPubMed
Dare, MR, Middleton, P, Crowther, CA, Flenady, VJ, Varatharaju, B. Planned early birth versus expectant management (waiting) for prelabor rupture of membranes at term (37 weeks or more). Cochrane Database Syst Rev 2006; (1): CD005302.CrossRefGoogle Scholar
Anotayanonth, S, Subhedar, NV, Neilson, JP, Harigopal, S. Betamimetics for inhibiting preterm labor. Cochrane Database Syst Rev 2004; (4): CD004352.CrossRefGoogle Scholar
King, JF, Flenady, VJ, Papatsonis, DN, et al. Calcium channel blockers for inhibiting preterm labour. Cochrane Database Syst Rev 2003; (1): CD002255. http://dx.doi.org/10.1002/14651858.CD002255. Update in: Cochrane Database Syst Rev 2014; 6: CD002255.CrossRefGoogle Scholar
King, JF, Flenady, V, Cole, S, Thornton, S. Cyclo-oxygenase (COX) inhibitors for treating preterm labor. Cochrane Database Syst Rev 2005; (2): CD001992.CrossRefGoogle Scholar
Papatsonis, D, Flenady, V, Liley, H. Maintenance therapy with oxytocin antagonists for inhibiting preterm birth after threatened preterm labour. Cochrane Database Syst Rev 2013; 10: CD005938.Google Scholar
van Winden, TMS, Nijman, TAJ, Kleinrouweler, CE, et al. Tocolysis with nifedipine versus atosiban and perinatal outcome: an individual participant data meta-analysis. BMC Pregnancy Childbirth 2022; 22(1): 567. http://dx.doi.org/10.1186/s12884-022-04854-1.CrossRefGoogle ScholarPubMed
Mackeen, AD, Seibel-Seamon, J, Muhammad, J, et al. Tocolytics for preterm premature rupture of membranes. Cochrane Database Syst Rev 2014; (2): CD007062.Google Scholar
Naik Gaunekar, N, Raman, P, Bain, , E, et al. Maintenance therapy with calcium channel blockers for preventing preterm birth after threatened preterm labor. Cochrane Database Syst Rev 2013; (10): CD004071.Google Scholar
van Vliet, E, Seinen, L, Roos, C, et al. Maintenance tocolysis with nifedipine in threatened preterm labour: 2-year follow up of the offspring in the APOSTEL II trial. BJOG 2016; 123(7): 1107–14.CrossRefGoogle ScholarPubMed
Thornton, JG. Maintenance tocolysis. BJOG 2005; 112: 118–21.Google ScholarPubMed
Liggins, G. Premature delivery of foetal lambs infused with glucocorticoids. J Endocrinol 1969; 45: 515–23.CrossRefGoogle ScholarPubMed
Crowley, P, Chalmers, I, Keirse, MJ. The effects of corticosteroid administration before preterm delivery: an overview of the evidence from controlled trials. Br J Obstet Gynaecol 1990; 97: 1125.CrossRefGoogle ScholarPubMed
McGoldrick, E, Stewart, F, Parker, R, Dalziel, SR. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev 2020; (12): CD004454. http://dx.doi.org/10.1002/14651858.CD004454.pub4.Google ScholarPubMed
Melamed, N, Shah, J, Soraisham, A, et al. Association between antenatal corticosteroid administration-to-birth interval and outcomes of preterm neonates. Obstet Gynecol 2015; 125: 1377–84.CrossRefGoogle ScholarPubMed
Roberts, D, Dalziel, S. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev 2006; (3): CD004454.CrossRefGoogle Scholar
Melamed, N, Asztalos, E, Murphy, K, et al. Neurodevelopmental disorders among term infants exposed to antenatal corticosteroids during pregnancy: a population-based study. BMJ Open 2019; 9: e031197.CrossRefGoogle ScholarPubMed
Asztalos, EV, Murphy, KE, Matthews, SG. A growing dilemma: antenatal corticosteroids and long-term consequence. Am J Perinatol 2022; 39: 592600.Google Scholar
Räikkönen, K, Gissler, M, Kajantie, E. Associations between maternal antenatal corticosteroid treatment and mental and behavioral disorders in children. JAMA 2020; 323: 1924–33.CrossRefGoogle ScholarPubMed
Klein, K, McClure, EM, Colaci, D, et al. The Antenatal Corticosteroids Trial (ACT): a secondary analysis to explore site differences in a multi-country trial. Reprod Health 2016; 13(1): 64.CrossRefGoogle Scholar
Hamm, RF, Combs, CA, Aghajanian, P, Friedman, AM; Patient Safety and Quality Committee. Society for Maternal–Fetal Medicine special statement: quality metrics for optimal timing of antenatal corticosteroid administration. Am J Obstet Gynecol 2022; 226: B210.CrossRefGoogle Scholar
Crowther, CA, McKinlay, CJ, Middleton, P, Harding, JE. Repeat doses of prenatal corticosteroids for women at risk of preterm birth for improving neonatal health outcomes. Cochrane Database Syst Rev 2011; (6): CD003935.CrossRefGoogle Scholar
Back, SA, Han, BH, Luo, NL, et al. Selective vulnerability of late oligodendrocyte progenitors to hypoxia–ischemia. J Neurosci 2002; 22: 455–63.CrossRefGoogle ScholarPubMed
Haynes, RL, Folkerth, RD, Keefe, RJ, et al. Nitrosative and oxidative injury to premyelinating oligodendrocytes in periventricular leukomalacia. J Neuropathol Exp Neurol 2003; 62: 441–50.CrossRefGoogle ScholarPubMed
McDonald, JW, Silverstein, FS, Johnston, MV. Magnesium reduces N-methyl-D-aspartate (NMDA)-mediated brain injury in perinatal rats. Neurosci Lett 1990; 109: 234–8.CrossRefGoogle ScholarPubMed
Burd, I, Breen, K, Friedman, A, Chai, J, Elovitz, MA. Magnesium sulfate reduces inflammation-associated brain injury in fetal mice. Am J Obstet Gynecol 2010; 202: 292.e1–9.CrossRefGoogle ScholarPubMed
Crowther, CA, Hiller, JE, Doyle, LW, Haslam, RR. Effect of magnesium sulfate given for neuroprotection before preterm birth: a randomized controlled trial. JAMA 2003; 290: 2669–76.CrossRefGoogle ScholarPubMed
Doyle, LW, Crowther, CA, Middleton, P, Marret, S, Rouse, D. Magnesium sulphate for women at risk of preterm birth for neuroprotection of the fetus. Cochrane Database Syst Rev 2009; (1): CD004661.Google Scholar
Kenyon, S, Boulvain, M, Neilson, J. Antibiotics for preterm rupture of membranes. Cochrane Database Syst Rev 2013; (12): CD001058.Google Scholar
Kenyon, SL, Taylor, DJ, Tarnow-Mordi, W; ORACLE Collaborative Group. Broad-spectrum antibiotics for spontaneous preterm labor: the ORACLE II randomised trial. Lancet 2001; 357: 989–94.Google ScholarPubMed
Kenyon, S, Pike, K, Jones, DR, et al. Childhood outcomes after prescription of antibiotics to pregnant women with preterm rupture of the membranes: 7-year follow-up of the ORACLE I trial. Lancet 2008; 372: 1310–18.Google ScholarPubMed
Boyer, KM, Gotoff, SP. Prevention of early-onset neonatal Group B streptococcal disease with selective intrapartum chemoprophylaxis. New Eng J Med 1986; 314: 1665–9.CrossRefGoogle Scholar
Werner, EF, Savitz, DA, Janevic, TM, et al. Mode of delivery and neonatal outcomes in preterm, small-for-gestational-age newborns. Obstet Gynecol 2012; 120: 560–4.CrossRefGoogle ScholarPubMed
Alfirevic, Z, Milan, SJ, Livio, S. Cesarean section versus vaginal delivery for preterm birth in singletons. Cochrane Database Syst Rev 2012; (6): CD000078.CrossRefGoogle ScholarPubMed
Hannah, ME, Hannah, WJ, Hewson, SA, et al. Planned cesarean section versus planned vaginal birth for breech presentation at term: a randomised multicentre trial. Term Breech Trial Collaborative Group. Lancet 2000; 356: 1375–83.Google ScholarPubMed
Rosemann, G. Vacuum extraction of premature infants. S Afr J Obstet Gynaecol 1969; 7: 1012.Google Scholar
Åberg, K, Norman, M, Ekéus, C. Preterm birth by vacuum extraction and neonatal outcome: a population-based cohort study. BMC Pregnancy Childbirth 2014; 14: 42.CrossRefGoogle ScholarPubMed
Royal College of Obstetricians and Gynaecologists. Operative Vaginal Delivery. Green-top Guideline No. 26. London: Royal College of Obstetricians and Gynaecologists, 2011. www.rcog.org.uk/en/guidelines-research-services/guidelines/gtg26/.Google Scholar
Chapman, E, Reveiz, L, Illanes, E, Bonfill Cosp, X. Antibiotic regimens for management of intra-amniotic infection. Cochrane Database Syst Rev 2014; (12): CD010976.CrossRefGoogle ScholarPubMed
Rabe, H, Reynolds, G, Diaz-Rossello, J. Early versus delayed umbilical cord clamping in preterm infants. Cochrane Database Syst Rev 2004; (4): CD003248.CrossRefGoogle Scholar

Save element to Kindle

To save this element to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Spontaneous Preterm Labour and Birth (Including Preterm Pre-labour Rupture of Membranes)
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Spontaneous Preterm Labour and Birth (Including Preterm Pre-labour Rupture of Membranes)
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Spontaneous Preterm Labour and Birth (Including Preterm Pre-labour Rupture of Membranes)
Available formats
×