Skip to main content Accessibility help
×
Hostname: page-component-6bf8c574d5-k2jvg Total loading time: 0 Render date: 2025-03-03T20:13:17.365Z Has data issue: false hasContentIssue false

Fetal Compromise in Labor

Published online by Cambridge University Press:  15 January 2025

Mark I. Evans
Affiliation:
Icahn School of Medicine at Mount Sinai, New York and Yong Loo Lin School of Medicine, National University of Singapore
Lawrence D. Devoe
Affiliation:
Medical College of Georgia at Augusta University
Philip J. Steer
Affiliation:
Imperial College London

Summary

Sixty years ago, the purpose of introducing electronic fetal heart rate monitoring (EFM) was to reduce the incidence of intrapartum stillbirth. However, by the early 1980s, with falling stillbirth rates, fetal blood sampling had been widely abandoned, as many considered that EFM was sufficient on its own. Unfortunately, while the sensitivity of EFM for the detection of potential fetal compromise is high, specificity is low, and there is a high false positive rate which has been associated with a rising cesarean section rate. The authors suggest that EFM is considered and analyzed as a classic screening test and not a diagnostic test. Furthermore, it requires contextualization with other risk factors to achieve improved performance. A new proposed metric, the Fetal Reserve Index, takes into account additional risk factors and has demonstrated significantly improved performance metrics. It is going through the phases of further development, evaluation, and wider clinical implementation.
Get access
Type
Element
Information
Online ISBN: 9781009466295
Publisher: Cambridge University Press
Print publication: 13 February 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Greenwell, EA, Wyshak, G, Ringer, SA, et al. Intrapartum temperature elevation, epidural use, and adverse outcome in term infants. Pediatrics 2012;129:e447–54.CrossRefGoogle ScholarPubMed
Hulthen, IV, Petersson, K, Kublickas, M, et al. Both acute and chronic placental inflammation are overrepresented in term stillbirths: a case-control study. Infect Dis Obs Gynecol 2012;2012:Article ID 293867, 8 pages.CrossRefGoogle Scholar
Balchin, I, Whittaker, JC, Lamont, RF, et al. Maternal and fetal characteristics associated with meconium-stained amniotic fluid. Obstet Gynecol 2011;117:828–35. doi.org/10.1097/AOG.0b013e3182117a26.CrossRefGoogle ScholarPubMed
Singh, M, Varma, R. Reducing complications associated with a deeply engaged head at caesarean section: a simple instrument. Obstet Gynaecol 2008;10:3841.CrossRefGoogle Scholar
Steer, P. Has the expression “fetal distress” outlived its usefulness? Br J Obs Gynaecol 1982;89:690–3.Google ScholarPubMed
Addy, DP. Birth asphyxia. Br Med J 1982;284:1288–9.CrossRefGoogle ScholarPubMed
Towell, M. Fetal acid base physiology and intrauterine asphyxia. In Goodwin, JW, Godden, JO, Chance, GW, eds. Perinatal Medicine, The Basic Science Underlying Clinical Practice. Baltimore: Williams and Wilkins, 1976. 187208.Google Scholar
Beard, RW, Morris, ED, Clayton, SG. pH of foetal capillary blood as an indicator of the condition of the foetus. J Obstet Gynaecol Br Commonw 1967;74:812–22.CrossRefGoogle Scholar
ACOG Committee on Obstetric Practice. ACOG Committee Opinion. Number 326, December 2005. Inappropriate use of the terms fetal distress and birth asphyxia. Obstet Gynecol 2005;106:1469–70. doi.org/10.1097/00006250-200512000-00056.Google Scholar
Sykes, GS, Molloy, PM, Johnson, P, et al. Do Apgar scores indicate asphyxia? Lancet 1982;i:4945.Google Scholar
Lissauer, TJ, Steer, PJ. The relation between the need for intubation at birth, abnormal cardiotocograms in labour and cord artery blood gas and pH values. BJOG An Int J Obstet Gynaecol 1986;93:1060–6. doi.org/10.1111/j.1471-0528.1986.tb07831.x.CrossRefGoogle ScholarPubMed
Bennet, L, Westgate, JA, Liu, YC, Wassink, G, Gunn, A. Fetal acidosis and hypotension during repeated umbilical cord occlusions are associated with enhanced chemoreflex responses in near-term fetal sheep. J Appl Physiol 2005;99:1477–82.CrossRefGoogle ScholarPubMed
Westgate, JA, Wibbens, B, Bennet, L, et al. The intrapartum deceleration in center stage: a physiologic approach to the interpretation of fetal heart rate changes in labor. Am J Obstet Gynecol 2007;197:236.e1–236.e11. doi.org/10.1016/j.ajog.2007.03.063.CrossRefGoogle Scholar
National Institute for Health and Care Excellence. Fetal monitoring in labour NICE guideline [NG229] Published: 14 December 2022. www.nice.org.uk/guidance/ng229 (accessed January 16, 2022).Google Scholar
ACOG Committee on Obstetric Practice. ACOG Practice Bulletin No. 106: Intrapartum fetal heart rate monitoring: nomenclature, interpretation, and general management principles. Obstet Gynecol 2009;114:192202. doi.org/10.1097/AOG.0b013e3181aef106.CrossRefGoogle Scholar
Steer, PJ, Eigbe, F, Lissauer, TJ, et al. Interrelationships among abnormal cardiotocograms in labor, meconium staining of the amniotic fluid, arterial cord blood pH and Apgar scores. Obstet Gynecol 1989;74:715–21.Google ScholarPubMed
Tarvonen, MJ, Lear, CA, Andersson, S, et al. Increased variability of fetal heart rate during labour: a review of preclinical and clinical studies. BJOG An Int J Obstet Gynaecol 2022;129:2070–81. doi.org/10.1111/1471-0528.17234.CrossRefGoogle Scholar
Loussert, L, Berveiller, P, Magadoux, A, et al. Association between marked fetal heart rate variability and neonatal acidosis: A prospective cohort study. BJOG An Int J Obstet Gynaecol Published online first: 2022. doi.org/10.1111/1471-0528.17345.CrossRefGoogle Scholar
Low, JA, Karchmar, J, Broekhoven, L, et al. The probability of fetal metabolic acidosis during labor in a population at risk as determined by clinical factors. Am J Obstet Gynecol 1981;141:941–51.CrossRefGoogle Scholar
Phelan, JP, Ahn, MO. Perinatal observations in forty-eight neurologically impaired term infants. AmJ Obs Gynecol 1994;171:424–31.Google ScholarPubMed
Stewart, AM, Macones, GA, Odibo, AO, et al. Changes in fetal heart tracing characteristics after magnesium exposure. Am J Perinatol 2014;31:869–74. doi.org/10.1055/s-0033-1363499Google ScholarPubMed
Wheeler, T, Murrills, A. Patterns of fetal heart rate during normal pregnancy. Br J Obstet Gynaecol 1978;85:1827.CrossRefGoogle ScholarPubMed
Pillai, M, James, D. The development of fetal heart rate patterns during normal pregnancy. Obstet Gynecol 1990;76:812–6. doi.org/10.1097/00006250-199011000-00017CrossRefGoogle ScholarPubMed
Westgate, JA, Bennet, L, Gunn, AJ. Fetal heart rate variability changes during brief repeated umbilical cord occlusion in near term fetal sheep. BJOG 1999;106:664–71.CrossRefGoogle ScholarPubMed
Tournier, A, Beacom, M, Westgate, JA, et al. Physiological control of fetal heart rate variability during labour: implications and controversies. J Physiol 2022;600:431–50. doi.org/10.1113/JP282276.CrossRefGoogle ScholarPubMed
Shelley, T, Tipton, RH. Dip area. A quantitative measure of fetal heart rate patterns. J Obs GynaecolBrCommonw 1971;78:694701.Google ScholarPubMed
Esteban-Escaño, J, Castán, B, Castán, S, et al. Machine learning algorithm to predict acidemia using electronic fetal monitoring recording parameters. Entropy 2022;24:68 doi.org/10.3390/e24010068.Google Scholar
Gurney-Champion, Gurney-Champion S. Observations of the relationship of the maternal and foetal temperatures. J Obstet Gynaecol Br Emp 1903;3:556–7.Google Scholar
Wood, C, Beard, RW. Temperature of the human foetus. J Obs Gynaecol Br C 1964;71:768–9.Google ScholarPubMed
Ayres-De-Campos, D, Spong, CY, Chandraharan, E. FIGO consensus guidelines on intrapartum fetal monitoring: cardiotocography. Int J Gynecol Obstet 2015;131:1324. doi.org/10.1016/j.ijgo.2015.06.020.CrossRefGoogle ScholarPubMed
Evans, MI, Britt, DW, Evans, SM, et al. Changing perspectives of electronic fetal monitoring. Reprod. Sci. 2022;29:1874–94. doi.org/10.1007/s43032-021-00749-2.CrossRefGoogle ScholarPubMed
Steer, PJ, Yau, CWH, Blott, M, et al. A case–control study of the interaction of fetal heart rate abnormalities, fetal growth restriction, meconium in the amniotic fluid and tachysystole, in relation to the outcome of labour. BJOG An Int J Obstet Gynaecol 2022;130:286–91. doi.org/10.1111/1471-0528.17302.Google Scholar
Jindal, S, Steer, PJ, Savvidou, M, et al. Risk factors for a serious adverse outcome in neonates: a retrospective cohort study of vaginal births. BJOG An Int J Obstet Gynaecol 2023;130:1521–30 doi.org/10.1111/1471-0528.17531.CrossRefGoogle ScholarPubMed
Beard, RW, Filshie, GM, Knight, CA, et al. The significance of the changes in the continuous foetal heart rate in the first stage of labour. J Obstet Gynaecol Br Commonw 1971;78:865–81.CrossRefGoogle ScholarPubMed
Steer, P. The management of large and small for gestational age fetuses. Semin Perinatol 2004;28:5966.CrossRefGoogle ScholarPubMed
Danielian, PJ, Allman, ACJ, Steer, PJ. Is obstetric and neonatal outcome worse in fetuses who fail to reach their own growth potential? Brit J Obs Gynaecol 1992;99:451–4. doi.org/10.1111/j.1471-0528.1992.tb13779.x.Google ScholarPubMed
Bligh, LN, Flatley, CJ, Kumar, S. Reduced growth velocity at term is associated with adverse neonatal outcomes in non-small for gestational age infants. EurJ Obs Gynecol Reprod Biol 2019;240:125–9.Google ScholarPubMed
Madden, JV, Flatley, CJ, Kumar, S. Term small-for-gestational-age infants from low-risk women are at significantly greater risk of adverse neonatal outcomes. Am J Obstet Gynecol 2018;218:525.e1525.e9. doi.org/10.1016/j.ajog.2018.02.008.CrossRefGoogle ScholarPubMed
Fleischer, A, Schulman, H, Jagani, N, et al. The development of fetal acidosis in the presence of an abnormal fetal heart rate tracing. Am J Obstet Gynecol 1982;144:5560.CrossRefGoogle ScholarPubMed
Sukumaran, S, Pereira, V, Mallur, S, et al. Cardiotocograph (CTG) changes and maternal and neonatal outcomes in chorioamnionitis and/or funisitis confirmed on histopathology. Eur J Obstet Gynecol Reprod Biol 2021;260:183–8. doi.org/10.1016/j.ejogrb.2021.03.029.CrossRefGoogle ScholarPubMed
Fishman, SG, Gelber, SE. Evidence for the clinical management of chorioamnionitis. Semin Fetal Neonatal Med 2012;17:4650. doi.org/10.1016/j.siny.2011.09.002.CrossRefGoogle ScholarPubMed
ACOG Committee on Obstetric Practice. Intrapartum management of intraamniotic infection. Committee Opinion number 712, August 2017. www.acog.org/clinical/clinical-guidance/committee-opinion/articles/2017/08/intrapartum-management-of-intraamniotic-infection (accessed January 16, 2023).Google Scholar
Badawi, N, Kurinczuk, JJ, Keogh, JM, et al. Intrapartum risk factors for newborn encephalopathy: the Western Australian case-control study. Br Med J 1998;317:1554–8.Google ScholarPubMed
McNamara, H, Johnson, N. The effect of uterine contractions on fetal oxygen saturation. Br J Obs Gynaecol Gynaecol 1995;102:644–7.Google ScholarPubMed
Simpson, KR, James, DC. Effects of oxytocin-induced uterine hyperstimulation during labor on fetal oxygen status and fetal heart rate patterns. Am J Obstet Gynecol 2008;199:34.e1-34.e5. doi.org/10.1016/j.ajog.2007.12.015.CrossRefGoogle ScholarPubMed
Frenken, MWE, van der Woude, DAA, Dieleman, JP, et al. The association between uterine contraction frequency and fetal scalp pH in women with suspicious or pathological fetal heart rate tracings: A retrospective study. Eur J Obstet Gynecol Reprod Biol 2022;271:16. doi.org/10.1016/j.ejogrb.2022.01.023.CrossRefGoogle ScholarPubMed
Peebles, DM, Spencer, JA, Edwards, AD, et al. Relation between frequency of uterine contractions and human fetal cerebral oxygen saturation studied during labour by near infrared spectroscopy. Br J Obs Gynaecol 1994;101:44–8.Google ScholarPubMed
Skupski, DW, Rosenberg, CR, Eglinton, GS. Intrapartum fetal stimulation tests: a meta-analysis. Obstet Gynecol 2002;99:129–34. doi.org/10.1016/S0029-7844(01)01645-3.Google ScholarPubMed
Birgisdottir, BT, Holzmann, M, Varli, IH, et al. Reference values for Lactate Pro 2TM in fetal blood sampling during labor: a cross-sectional study. J Perinat Med 2017;45:321–5. doi.org/10.1515/jpm-2016-0027.CrossRefGoogle ScholarPubMed
Holzmann, M, Nordström, L, Steer, P. Inconsistency between lactate meters in the assessment of fetal metabolic acidemia. Acta Obstet Gynecol Scand 2021;100:815–7. doi.org/10.1111/aogs.14140.CrossRefGoogle ScholarPubMed
Vintzileos, AM, Nochimson, DJ, Guzman, ER, et al. Intrapartum electronic fetal heart rate monitoring versus intermittent auscultation: a meta-analysis. Obstet Gynecol 1995;85:149–55.CrossRefGoogle ScholarPubMed
Thacker, SB, Stroup, DF, Peterson, HB. Efficacy and safety of intrapartum electronic fetal monitoring: an update. Obstet Gynecol 1995;86:613–20.CrossRefGoogle ScholarPubMed
Alfirevic, Z, Devane, D, Gyte, GM, et al. Continuous cardiotocography (CTG) as a form of electronic fetal monitoring (EFM) for fetal assessment during labour. CochraneDatabaseSystRev 2017;2:CD006066.Google ScholarPubMed
East, CE, Leader, LR, Sheehan, P, et al. Intrapartum fetal scalp lactate sampling for fetal assessment in the presence of a non-reassuring fetal heart rate trace. Cochrane Database Syst Rev 2015;:CD006174.CrossRefGoogle Scholar
Rajala, K, Mönkkönen, A, Saarelainen, H, et al. Fetal lactate levels align with the stage of labour. Eur J Obstet Gynecol Reprod Biol 2021;261:139–43. doi.org/10.1016/j.ejogrb.2021.04.032CrossRefGoogle ScholarPubMed
Briozzo, L, Martinez, A, Nozar, M, et al. Tocolysis and delayed delivery versus emergency delivery in cases of non-reassuring fetal status during labor. J Obs Gynaecol Res 2007;33:266–73.Google ScholarPubMed
Lissauer, TJ, Steer, PJ. The relation between the need for intubation at birth, abnormal cardiotocograms in labour and cord artery blood gas and pH values. Br J Obstet Gynaecol 1986;93:1060–6.CrossRefGoogle ScholarPubMed
Johnson, GJ, Salmanian, B, Denning, SG, et al. Relationship between umbilical cord gas values and neonatal outcomes: implications for electronic fetal heart rate monitoring. Obstet Gynecol 2021;138:366–73. doi.org/10.1097/AOG.0000000000004515.Google ScholarPubMed
Ennis, M, Vincent, CA. Obstetric accidents: a review of 64 cases. Br Med J 1990;300:1365–7.CrossRefGoogle ScholarPubMed
Vincent, CA, Martin, T, Ennis, M. Obstetric accidents: the patient’s perspective. Br J Obstet Gynaecol 1991;98:390–5.CrossRefGoogle ScholarPubMed
Confidential enquiry into stillbirths and deaths in infancy: fifth annual report, 1 January to 31 December 1996. London: Maternal and child health research consortium 1998. www.cemach.org.uk/publications/5threport.Google Scholar
NHSLA. Study of stillbirth claims. Available from NHS Resolution. 2nd Floor, 151 Buckingham Palace Road, London, SW1W 9SZ, UK. 2009.Google Scholar
Dawes, GS, Moulden, M, Redman, CW. Improvements in computerized fetal heart rate analysis antepartum. J Perinat Med 1996;24:2536.CrossRefGoogle ScholarPubMed
Alonso-Betanzos, A, Moret-Bonillo, V, Devoe, L, Searle, J, Banias, B RE. Computerized antenatal assessment: the NST-Expert Project. Automedica 1992;14:322.Google Scholar
Keith, RDF, Beckley, S, Garibaldi, JM, et al. A multicentre comparative study of 17 experts and an intelligent computer system for managing labour using the cardiotocogram. Br J Obstet Gynaecol 1995;102:688700.CrossRefGoogle Scholar
Brocklehurst, P, Field, DJ, Juszczak, E, et al. The INFANT trial. Lancet 2017;389:1719–29. doi.org/10.1016/S0140-6736(17)31594-5.Google Scholar
MacDonald, D, Grant, A, Sheridan-Pereira, M, et al. The Dublin randomized controlled trial of intrapartum fetal heart rate monitoring. Am J Obstet Gynecol 1985;152:524–39.CrossRefGoogle ScholarPubMed
Steer, PJ, Kovar, I, McKenzie, C, et al. Computerised analysis of intrapartum fetal heart rate patterns and adverse outcomes in the INFANT trial. BJOG 2019;126:1354–61.CrossRefGoogle ScholarPubMed
Nunes, I, Ayres-de-Campos, D, Ugwumadu, A, et al. Central fetal monitoring with and without computer analysis: a randomized controlled trial. Obstet Gynecol 2017;129:8390.CrossRefGoogle ScholarPubMed
Elliott, C, Warrick, PA, Graham, E, et al. Graded classification of fetal heart rate tracings: association with neonatal metabolic acidosis and neurologic morbidity. Am J Obstet Gynecol 2010;202:258.e1-258.e8. doi.org/10.1016/j.ajog.2009.06.026.CrossRefGoogle ScholarPubMed
Greene, KR, Dawes, GS, Lilja, H, et al. Changes in the ST waveform of the fetal lamb electrocardiogram with hypoxemia. Am J Obstet Gynecol 1982;144:950–8.CrossRefGoogle ScholarPubMed
Rosen, KG, Luzietti, R. The fetal electrocardiogram: ST waveform analysis during labour. J Perinat Med 1994;22:501–12.Google ScholarPubMed
Neilson, JP. Fetal electrocardiogram (ECG) for fetal monitoring during labour. CochraneDatabaseSystRev 2013;5:CD000116.CrossRefGoogle Scholar
Olofsson, P, Ayres-De-Campos, D, Kessler, J, et al. A critical appraisal of the evidence for using cardiotocography plus ECG ST interval analysis for fetal surveillance in labor. Part II: the meta-analyses. Acta Obstet Gynecol Scand 2014;93:571–86. doi.org/10.1111/aogs.12412.Google ScholarPubMed
Belfort, MA, Saade, GR, Thom, E, et al. A randomized trial of Iitrapartum fetal ECG ST-segment analysis. N Engl J Med 2015;373:632–41.CrossRefGoogle ScholarPubMed
Xodo, S, Saccone, G, Schuit, E, et al. Why STAN might not be dead. J Matern Neonatal Med 2017;30:2306–8. doi.org/10.1080/14767058.2016.1247263.Google Scholar
Bhide, A, Chandraharan, E, Acharya, G. Fetal monitoring in labor: implications of evidence generated by new systematic review. Acta Obstet Gynecol Scand 2016;95:58. doi.org/10.1111/aogs.12830.CrossRefGoogle ScholarPubMed
Blix, E, Brurberg, KG, Reierth, E, et al. ST waveform analysis versus cardiotocography alone for intrapartum fetal monitoring: a systematic review and meta-analysis of randomized trials. Acta Obstet Gynecol Scand 2016;95:1627. doi.org/10.1111/aogs.12828.CrossRefGoogle ScholarPubMed
Chandraharan, E. Foetal electrocardiograph (ST-analyser or STAN) for intrapartum foetal heart rate monitoring: a friend or a foe? J Matern Neonatal Med 2018;31:123–7. doi.org/10.1080/14767058.2016.1276559.Google ScholarPubMed
Blix, E, Brurberg, KG, Reierth, E, et al. ST waveform analysis versus cardiotocography alone for intrapartum fetal monitoring: an updated systematic review and meta-analysis of randomized trials. Acta Obstet Gynecol Scand 2023. doi.org/10.1111/aogs.14752.CrossRefGoogle Scholar
Mozurkewich, E, Wolf, FM. Near-infrared spectroscopy for fetal assessment during labour. Cochrane DatabaseSystRev 2000;CD002254.CrossRefGoogle Scholar
Nickelsen, C, Thomsen, SG, Weber, T. Continuous acid-base assessment of the human fetus during labour by tissue pH and transcutaneous carbon dioxide monitoring. Br J Obstet Gynaecol 1985;92:220–5.CrossRefGoogle ScholarPubMed
East, CE, Begg, L, Colditz, PB, et al. Fetal pulse oximetry for fetal assessment in labour. Cochrane Database Syst Rev 2014;CD004075.CrossRefGoogle Scholar
Sturbois, G, Uzan, S, Rotten, D, et al. Continuous subcutaneous pH measurement in human fetuses. Am J Obstet Gynecol 1977;128:901–3.CrossRefGoogle ScholarPubMed
Sturbois, G, Uzan, S, Breart, G, et al. Improvements in the results with the continuous pH electrode due to technical progress: a comparison between two series of cases. Arch Gynecol 1978;226:8792. doi.org/10.1007/BF02116732.CrossRefGoogle Scholar
ACOG. Neonatal Encephalopathy and Cerebral Palsy: Defining the Pathogenesis and Pathophysiology. Washington DC: ACOG, 2003.Google Scholar
ACOG. Executive summary: Neonatal encephalopathy and neurologic outcome, second edition. Report of the American College of Obstetricians and Gynecologists’ Task Force on Neonatal Encephalopathy. Obstet Gynecol 2014;123:896901. doi.org/10.1097/01.AOG.0000445580.65983.d2.CrossRefGoogle Scholar
Appleton, RE, Gupta, R. Cerebral palsy: not always what it seems. Arch Dis Child 2019;104:809–14. doi.org/10.1136/archdischild-2018-315633.CrossRefGoogle Scholar
Eden, RD, Evans, MI, Britt, DW, et al. Combined prenatal and postnatal prediction of early neonatal compromise risk. J Matern Neonatal Med 2021;34:29963007. doi.org/10.1080/14767058.2019.1676714.CrossRefGoogle ScholarPubMed
Nakao, M, Okumura, A, Hasegawa, J, et al. Fetal heart rate pattern in term or near-term cerebral palsy: a nationwide cohort study. Am J Obstet Gynecol 2020;223:907.e1–907.e13. doi.org/10.1016/j.ajog.2020.05.059.CrossRefGoogle ScholarPubMed
Cohen, ASA, Farrow, EG, Abdelmoity, AT, et al. Genomic answers for children: dynamic analyses of >1000 pediatric rare disease genomes. Genet Med 2022;24:1336–48. doi.org/10.1016/j.gim.2022.02.007.CrossRefGoogle ScholarPubMed
Gonzalez-Mantilla, PJ, Hu, Y, Myers, SM, et al. Diagnostic yield of exome sequencing in cerebral palsy and implications for genetic testing guidelines: a systematic review and meta-analysis. JAMA Pediatr 2023;177:472–8. doi.org/10.1001/jamapediatrics.2023.0008.CrossRefGoogle ScholarPubMed
Van Eyk, C, Maclennan, SC, Maclennan, AH. All patients with a cerebral palsy diagnosis merit genomic sequencing. JAMA Pediatr 2023;177:455–6. doi.org/10.1001/jamapediatrics.2023.0015.CrossRefGoogle ScholarPubMed
Evans, MI, Britt, DW, Devoe, LD. Implications of genetic variants in cerebral palsy. JAMA Pediatr 2023;177:871–2. doi.org/10.1001/jamapediatrics.2023.1861.CrossRefGoogle ScholarPubMed
Chopra, M, Gable, DL, Love-Nichols, J, et al. Mendelian etiologies identified with whole exome sequencing in cerebral palsy. Ann Clin Transl Neurol 2022;9:193205. doi.org/10.1002/acn3.51506.CrossRefGoogle ScholarPubMed
Yechieli, M, Gulsuner, S, Ben-Pazi, H, et al. Diagnostic yield of chromosomal microarray and trio whole exome sequencing in cryptogenic cerebral palsy. J Med Genet 2022;59:759–67. doi.org/10.1136/jmedgenet-2021-107884.CrossRefGoogle ScholarPubMed
Evans, MI, Britt, DW, Devoe, LD. Etiology and ontogeny of cerebral palsy: implications for practice and research. Reprod Sci;1:3. doi:10.1007/s43032-023-01422-6.CrossRefGoogle Scholar
Evans, MI, Britt, DW, Evans, SM, et al. Improving the interpretation of electronic fetal monitoring: the fetal reserve index. Am J Obstet Gynecol 2023;228:S1129–43. doi.org/10.1016/J.AJOG.2022.11.1275.CrossRefGoogle ScholarPubMed
Eden, RD, Evans, MI, Evans, SM, et al. Reengineering electronic fetal monitoring interpretation: using the fetal reserve index to anticipate the need for emergent operative delivery. Reprod Sci 2018;25:487–97. doi.org/10.1177/1933719117737849.CrossRefGoogle ScholarPubMed
Evans, MI, Britt, DW, Evans, SM DL. Improving the interpretation of electronic fetal monitoring: the fetal reserve index. Am J Obs Gynecol 2023;228:S1129–1143.CrossRefGoogle Scholar
Evans, MI, Britt, DW, Eden, RD, et al. Earlier and improved screening for impending fetal compromise. J Matern Neonatal Med 2022;35:2895–903. doi.org/10.1080/14767058.2020.1811670.Google ScholarPubMed
Richardson, DA, Evans, MI, Cibils, LA. Midforceps delivery: a critical review. Am J Obstet Gynecol 1983;145:621–32. doi.org/10.1016/0002-9378(83)91208-5.CrossRefGoogle ScholarPubMed
Balchin, I, Whittaker, JC, Patel, RR, et al. Racial variation in the association between gestational age and perinatal mortality: prospective study. BMJ 2007;334:833 doi.org/10.1136/bmj.39132.482025.80.CrossRefGoogle ScholarPubMed
Balchin, I, Whittaker, JC, Lamont, RF, et al. Timing of planned cesarean delivery by racial group. Obstet Gynecol 2008;111:659–66. doi.org/10.1097/AOG.0b013e318163cd55.CrossRefGoogle ScholarPubMed
Xu, H, Mas-Calvet, M, Wei, SQ, et al. Abnormal fetal heart rate tracing patterns in patients with thick meconium staining of the amniotic fluid: association with perinatal outcomes. Am J Obstet Gynecol 2009;200:283–7.CrossRefGoogle ScholarPubMed
Lee, J, Romero, R, Lee, KA, et al. Meconium aspiration syndrome: a role for fetal systemic inflammation. Am J Obstet Gynecol 2016;214:366.e1–366.e9. doi.org/10.1016/j.ajog.2015.10.009.CrossRefGoogle ScholarPubMed
Kelleher, J, Bhat, R, Salas, AA, et al. Oronasopharyngeal suction versus wiping of the mouth and nose at birth: a randomised equivalency trial. Lancet 2013;382:326–30.CrossRefGoogle ScholarPubMed
Frey, HA, Tuuli, MG, Shanks, AL, et al. Interpreting category II fetal heart rate tracings: does meconium matter? AmJ Obs Gynecol 2014;211:644–8.Google ScholarPubMed
Geenes, V, Chappell, LC, Seed, PT, et al. Association of severe intrahepatic cholestasis of pregnancy with adverse pregnancy outcomes: a prospective population-based case-control study. Hepatology 2014;59. doi.org/10.1002/hep.26617.CrossRefGoogle ScholarPubMed
Hofmeyr, GJ, Xu, H, Eke, AC. Amnioinfusion for meconium-stained liquor in labour. Cochrane Database Syst Rev 2014;1:CD000014.Google Scholar
Davis, JD, Sanchez-Ramos, L, McKinney, JA, et al. Intrapartum amnioinfusion reduces meconium aspiration syndrome and improves neonatal outcomes in patients with meconium-stained fluid: a systematic review and meta-analysis. Am J Obstet Gynecol 2023;228:S1179S1191.e19. doi.org/10.1016/j.ajog.2022.07.047.CrossRefGoogle ScholarPubMed
Grether, JK, Nelson, KB. Maternal infection and cerebral palsy in infants of normal birth weight. J Am Med Assoc 1997;278:207–11.CrossRefGoogle ScholarPubMed
Impey, L, Greenwood, C, MacQuillan, K, et al. Fever in labour and neonatal encephalopathy: a prospective cohort study. BJOG 2001;108:594–7.Google ScholarPubMed
Towers, C V, Yates, A, Zite, N, et al. Incidence of fever in labor and risk of neonatal sepsis. Am J Obstet Gynecol 2017;216:596.e1–596.e5.CrossRefGoogle ScholarPubMed
Lieberman, E, Lang, J, Richardson, DK, et al. Intrapartum maternal fever and neonatal outcome. Pediatrics 2000;105:813.CrossRefGoogle ScholarPubMed
Yancey, MK, Zhang, J, Schwarz, J, et al. Labor epidural analgesia and intrapartum maternal hyperthermia. Obstet Gynecol 2001;98:763–70.Google ScholarPubMed
Agakidis, C, Agakidou, E, Philip, TS, et al. Labor epidural analgesia is independent risk factor for neonatal pyrexia. J Matern Neonatal Med 2011;24:1128–32.Google ScholarPubMed
Morton, S, Kua, J, Mullington, CJ. Epidural analgesia, intrapartum hyperthermia, and neonatal brain injury: a systematic review and meta-analysis. Br J Anaesth. 2021;126:500–15. doi.org/10.1016/j.bja.2020.09.046.CrossRefGoogle ScholarPubMed
Castillo, J, Davalos, A, Noya, M. Aggravation of acute ischemic stroke by hyperthermia is related to an excitotoxic mechanism. CerebrovascDis 1999;9:22–7.Google Scholar
Gunn, AJ, Bennet, L. Is temperature important in delivery room resuscitation? SeminNeonatol 2001;6:241–9.Google ScholarPubMed
Gluckman, PD, Wyatt, JS, Azzopardi, D, et al. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet 2005;365:663–70.CrossRefGoogle ScholarPubMed
Shankaran, S, Laptook, AR, Ehrenkranz, RA, et al. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med 2005;353:1574–84.CrossRefGoogle ScholarPubMed
Edwards, AD, Brocklehurst, P, Gunn, AJ, et al. Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data. BMJ 2010;340:c363. doi.org/10.1136/bmj.c363.CrossRefGoogle ScholarPubMed
Azzopardi, D V, Strohm, B, Edwards, AD, et al. Moderate hypothermia to treat perinatal asphyxial encephalopathy. N Engl J Med 2009;361:1349–58.CrossRefGoogle ScholarPubMed
Macaulay, JHH, Bond, K, Steer, PJ. Epidural analgesia in labor and fetal hyperthermia. Obstet Gynecol 1992;80:665–9.Google ScholarPubMed
National Institute for Health and Clinical Excellence. Intrapartum care for healthy women and babies. 2017. www.nice.org.uk/guidance/cg190.Google Scholar
Jung, E, Romero, R, Suksai, M, et al. Clinical chorioamnionitis due to intraamniotic infection in term gestations: the definition, microbiology, pathogenesis, differential diagnosis, and treatment. Am J Obstet Gynecol Published online first: March 2023. doi.org/10.1016/j.ajog.2023.02.002.Google Scholar
Venkatesh, KK, Glover, A V, Vladutiu, CJ, et al. Association of chorioamnionitis and its duration with adverse maternal outcomes by mode of delivery: a cohort study. BJOG An Int J Obstet Gynaecol 2019;126:719–27. doi.org/10.1111/1471-0528.15565.CrossRefGoogle ScholarPubMed
Goetzl, L. Maternal fever in labor: etiologies, consequences, and clinical management. Am J Obstet Gynecol 2023;228:S1274–82. doi.org/10.1016/j.ajog.2022.11.002.CrossRefGoogle ScholarPubMed
Barrett, JM. Funic reduction for the management of umbilical cord prolapse. Am J Obs Gynecol 1991;165:654–7.CrossRefGoogle ScholarPubMed
Gaffney, G, Sellers, S, Flavell, V, et al. Case-control study of intrapartum care, cerebral palsy, and perinatal death. Br Med J 1994;308:743–50.CrossRefGoogle ScholarPubMed
Nelson, K. Perspective on the role of perinatal asphyxia in neurologic outcome: its role in developmental deficits in children. Can Med Assoc J 1989;141 (Suppl):3–10.Google Scholar
Davies, M ; Lambert, G. Maternity payouts cost NHS twice the price of care itself. The Times (London). April 15, 2023. www.thetimes.co.uk/article/maternity-payouts-twice-cost-of-care-times-health-commission-svdhsjhqk.Google Scholar
Berglund, S, Grunewald, C, Pettersson, H, et al. Severe asphyxia due to delivery-related malpractice in Sweden 1990–2005. BJOG 2008;115:316–23.CrossRefGoogle ScholarPubMed
Beckley, S, Stenhouse, E, Greene, K. The development and evaluation of a computer-assisted teaching programme for intrapartum fetal monitoring. BJOG 2000;107:1138–44.CrossRefGoogle ScholarPubMed
Montgomery (Appellant) v Lanarkshire Health Board (Respondent) (Scotland) [2015] UKSC 11. Montgomery v Lanarksh. Heal. Board [2015]UKSC 11 www.supremecourt.uk/cases/uksc-2013-0136.html.Google Scholar
NICE (National Institute for Health and Care Excellence). Diabetes in pregnancy: management from preconception to the postnatal period. 2015. www.nice.org.uk/guidance/ng3/chapter/Recommendations (accessed February 13, 2023).Google Scholar
Spatz, ES, Krumholz, HM, Moulton, BW. The new era of informed consent: getting to a reasonable-patient standard through shared decision making. J Am Med Assoc 2016;315:2063–4.CrossRefGoogle ScholarPubMed
Can huddles really help? www.england.nhs.uk/blog/can-huddles-really-help/ (accessed January 17, 2023).Google Scholar
Morecambe Bay Investigation Report. 2015. www.gov.uk/government/publications/morecambe-bay-investigation-report (accessed May 10, 2021).Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Fetal Compromise in Labor
  • Mark I. Evans, Icahn School of Medicine at Mount Sinai, New York and Yong Loo Lin School of Medicine, National University of Singapore, Lawrence D. Devoe, Medical College of Georgia at Augusta University, Philip J. Steer, Imperial College London
  • Online ISBN: 9781009466295
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Fetal Compromise in Labor
  • Mark I. Evans, Icahn School of Medicine at Mount Sinai, New York and Yong Loo Lin School of Medicine, National University of Singapore, Lawrence D. Devoe, Medical College of Georgia at Augusta University, Philip J. Steer, Imperial College London
  • Online ISBN: 9781009466295
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Fetal Compromise in Labor
  • Mark I. Evans, Icahn School of Medicine at Mount Sinai, New York and Yong Loo Lin School of Medicine, National University of Singapore, Lawrence D. Devoe, Medical College of Georgia at Augusta University, Philip J. Steer, Imperial College London
  • Online ISBN: 9781009466295
Available formats
×