We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The goal of this chapter will be to briefly describe the remarkable properties of helium at low temperatures. After stating some of these properties we will see how they can be understood in terms of the phenomenon of Bose–Einstein condensation described in Chapter 7. We will give the main argument in two different formulations, once using the quasi-particle method of Bogoliubov, and then using a Green function approach.
We start with some experimental facts. Helium is a remarkable element. It was predicted to exist from observations of the Sun before it was found on Earth. It is the only element which remains a liquid at zero temperature and atmospheric pressure. Experimentally the phase diagram of 4He is shown in Figure 10.1. Helium I is a normal fluid and has a normal gas-liquid critical point. Helium II is a mixture of a normal fluid and a superfluid. The superfluid is characterized by the vanishing of its viscosity. Helium I and helium II are separated by a line known as the λ-transition line. At Tλ= 2.18 K, Pλ= 2.29 Pa, helium I, helium II, and helium gas coexist. The specific heat of liquid helium along the vapor transition line forms a logarithmic discontinuity shown in Figure 10.2. The form of this diagram resembles the Greek letter λ and is the reason for calling the transition a λ-transition.
The lack of viscosity of helium II leads to some remarkable experimental consequences, one of which we briefly describe. Let two containers A and B be linked by a thin capillary through which only a fluid with zero (or very low) viscosity can pass freely.
In our discussion so far we described the canonical ensemble of N identical particles or molecules. We found that from the canonical partition sum we can recover the free energy which is one of the thermodynamic potentials introduced in the first chapter. A natural question is whether there are other approaches to statistical mechanics which are in turn related to other state functions such as the entropy. In this chapter we will see that this is indeed the case. We will end up with the complete picture of how different probability measures in statistical mechanics are related to the various potentials in thermodynamics. In the process we will also uncover a simple statistical interpretation of the entropy function in thermodynamics.
The grand canonical ensemble
In the previous chapter we considered a statistical system with a fixed number N of identical molecules. We have argued that although the energy E of the system is a constant its precise value is not known. Hence we considered the probability P(E) that the system had energy E and used it to relate the average value of the energy of the system (involving the microscopic properties of the system) to the macroscopic thermodynamic variable U, the internal energy. In this section we will generalize this approach to include a variable number of molecules, Figure 3.1. We note that the number of particles N in a volume, although a constant, is similarly not precisely known.
Modern Monte Carlo methods have their roots in the 1940s when Fermi, Ulam, von Neumann, Metropolis and others began considering the use of random numbers to examine different problems in physics from a stochastic perspective (Cooper (1989), this set of biographical articles about S. Ulam provides fascinating insight into the early development of the Monte Carlo method, even before the advent of the modern computer). Very simple Monte Carlo methods were devised to provide a means to estimate answers to analytically intractable problems. Much of this work is unpublished and a view of the origins of Monte Carlo methods can best be obtained through examination of published correspondence and historical narratives. Although many of the topics which will be covered in this book deal with more complex Monte Carlo methods which are tailored explicitly for use in statistical physics, many of the early, simple techniques retain their importance because of the dramatic increase in accessible computing power which has taken place during the last two decades. In the remainder of this chapter we shall consider the application of simple Monte Carlo methods to a broad spectrum of interesting problems.
COMPARISONS OF METHODS FOR NUMERICAL INTEGRATION OF GIVEN FUNCTIONS
Simple methods
One of the simplest and most effective uses for Monte Carlo methods is the evaluation of definite integrals which are intractable by analytic techniques. (See the book by Hammersley and Handscomb (1964) for more mathematical details.) In the following discussion, for simplicity we shall describe the methods as applied to one-dimensional integrals, but it should be understood that these techniques are readily extended, and often most effective, when applied to multidimensional integrals.
Within the contents of this book we have attempted to elucidate the essential features of Monte Carlo simulations and their application to problems in statistical physics. We have attempted to give the reader practical advice as well as to present theoretically based background for the methodology of the simulations as well as the tools of analysis. New Monte Carlo methods will be devised and will be used with more powerful computers, but we believe that the advice given to the reader in Section 4.8 will remain valid.
In general terms we can expect that progress in Monte Carlo studies in the future will take place along two different routes. First, there will be a continued advancement towards ultra high resolution studies of relatively simple models in which critical temperatures and exponents, phase boundaries, etc. will be examined with increasing precision and accuracy. As a consequence, high numerical resolution as well as the physical interpretation of simulational results may well provide hints to the theorist who is interested in analytic investigation. On the other hand, we expect that there will be a tendency to increase the examination of much more complicated models which provide a better approximation to physical materials. As the general area of materials science blossoms, we anticipate that Monte Carlo methods will be used to probe the often complex behavior of real materials. This is a challenge indeed, since there are usually phenomena which are occurring at different length and time scales.
In the previous chapters of this text we have examined a wide variety of Monte Carlo methods in depth. Although these are exceedingly useful for many different problems in statistical physics, there are some circumstances in which the systems of interest are not well suited to Monte Carlo study. Indeed there are some problems which may not be treatable by stochastic methods at all, since the time-dependent properties as constrained by deterministic equations of motion are the subject of the study. The purpose of this chapter is thus to provide a very brief overview of some of the other important simulation techniques in statistical physics. Our goal is not to present a complete list of other methods or even a thorough discussion of these methods which are included but rather to offer sufficient background to enable the reader to compare some of the different approaches and better understand the strengths and limitations of Monte Carlo simulations.
MOLECULAR DYNAMICS
Integration methods (microcanonical ensemble)
Molecular dynamics methods are those techniques which are used to numerically integrate coupled equations of motion for a system which may be derived, e.g. in the simplest case from Lagrange's equations or Hamilton's equations. Thus, the approach chosen is to deal with many interacting atoms or molecules within the framework of classical mechanics. We begin this discussion with consideration of systems in which the number of particles N, the system volume V, and the total energy of the system E are held constant This is known as the NVE ensemble.
In the preceding chapters we had described the application of Monte Carlo methods in numerous areas that can be clearly identified as belonging to physics. Although the exposition was far from complete, it should have sufficed to give the reader an appreciation of the broad impact that Monte Carlo studies has already had in statistical physics. A more recent occurrence is the application of these methods in non-traditional areas of physics related research. More explicitly, we mean subject areas that are not normally considered to be physics at all but which make use of physics principles at their core. In some cases physicists have entered these arenas by introducing quite simplified models that represent a ‘physicist's view’ of a particular problem. Often such descriptions are oversimplified, but the hope is that some essential insight can be gained as is the case in many traditional physics studies. (A recent, provocative perspective of the role of statistical physics outside of physics has been presented by Stauffer, 2004.) In other cases, however, Monte Carlo methods are being applied by non-physicists (or ‘recent physicists’) to problems that, at best, have a tenuous relationship to physics. This chapter is to serve as a brief glimpse of applications of Monte Carlo methods ‘outside’ of physics. The number of such studies will surely grow rapidly; and even now, we wish to emphasize that we will make no attempt to be complete in our treatment.
Since the thrust of the homework problems is for the student to write, debug, and run ‘homemade’ programs, we will not provide a compendium of simulational software. Nonetheless, to provide some aid to the student in the learning process, we will offer a few programs that demonstrate some of the basic steps in a Monte Carlo simulation. We do wish to make the reader aware, however, that these program do not have all of the ‘bells and whistles’ which one might wish to introduce in a serious study but are merely simple programs that can be used to test the students' approach.
In the preceding chapters of this book we have dealt extensively with equilibrium properties of a wide variety of models and materials. We have emphasized the importance of insuring that equilibrium has been reached, and we have discussed the manner in which the system may approach the correct distribution of states, i.e. behavior before it comes to equilibrium. This latter topic has been treated from the perspective of helping us understand the difficulties of achieving equilibrium. The theory of equilibrium behavior is well developed and in many cases there is extensive, reliable experimental information available.
In this chapter, however, we shall consider models which are inherently non-equilibrium! This tends to be rather uncharted territory. For some cases theory exists, but it has not been fully tested. In other situations there is essentially no theory to rely upon. In some instances the simulation has preceded the experiment and has really led the way in the development of the field. As in the earlier chapters, for pedagogical reasons we shall concentrate on relatively simple models, but the presentation can be generalized to more complex systems.
DRIVEN DIFFUSIVE SYSTEMS (DRIVEN LATTICE GASES)
Over a decade ago a deceptively simple modification of the Ising-lattice gas model was introduced (Katz et al., 1984) as part of an attempt to understand the behavior of superionic conductors.
In most of the discussion presented so far in this book, the quantum character of atoms and electrons has been ignored. The Ising spin models have been an exception, but since the Ising Hamiltonian is diagonal (in the absence of a transverse magnetic field!), all energy eigenvalues are known and the Monte Carlo sampling can be carried out just as in the case of classical statistical mechanics. Furthermore, the physical properties are in accord with the third law of thermodynamics for Ising-type Hamiltonians (e.g. entropy S and specific heat vanish for temperature T → 0, etc.) in contrast to the other truly classical models dealt with in previous chapters (e.g. classical Heisenberg spin models, classical fluids and solids, etc.) which have many unphysical low temperature properties. A case in point is a classical solid for which the specific heat follows the Dulong–Petit law, C = 3NkB, as T → 0, and the entropy has unphysical behavior since S → – ∞. Also, thermal expansion coefficients tend to non-vanishing constants for T → 0 while the third law implies that they must be zero. While the position and momentum of a particle can be specified precisely in classical mechanics, and hence the groundstate of a solid is a perfectly rigid crystal lattice (motionless particles localized at the lattice points), in reality the Heisenberg uncertainty principle forbids such a perfect rigid crystal, even at T → 0; due to zero point motions which ‘smear out’ the particles over some region around these lattice points.
Historically physics was first known as ‘natural philosophy’ and research was carried out by purely theoretical (or philosophical) investigation. True progress was obviously limited by the lack of real knowledge of whether or not a given theory really applied to nature. Eventually experimental investigation became an accepted form of research although it was always limited by the physicist's ability to prepare a sample for study or to devise techniques to probe for the desired properties. With the advent of computers it became possible to carry out simulations of models which were intractable using ‘classical’ theoretical techniques. In many cases computers have, for the first time in history, enabled physicists not only to invent new models for various aspects of nature but also to solve those same models without substantial simplification. In recent years computer power has increased quite dramatically, with access to computers becoming both easier and more common (e.g. with personal computers and workstations), and computer simulation methods have also been steadily refined. As a result computer simulations have become another way of doing physics research. They provide another perspective; in some cases simulations provide a theoretical basis for understanding experimental results, and in other instances simulations provide ‘experimental’ data with which theory may be compared. There are numerous situations in which direct comparison between analytical theory and experiment is inconclusive. For example, the theory of phase transitions in condensed matter must begin with the choice of a Hamiltonian, and it is seldom clear to what extent a particular model actually represents a real material on which experiments are done.