We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The laws of thermodynamics are based on observations of macroscopic bodies, and encapsulate their thermal properties. On the other hand, matter is composed of atoms and molecules whose motions are governed by more fundamental laws (classical or quantum mechanics). It should be possible, in principle, to derive the behavior of a macroscopic body from the knowledge of its components. This is the problem addressed by kinetic theory in the following chapter. Actually, describing the full dynamics of the enormous number of particles involved is quite a daunting task. As we shall demonstrate, for discussing equilibrium properties of a macroscopic system, full knowledge of the behavior of its constituent particles is not necessary. All that is required is the likelihood that the particles are in a particular microscopic state. Statistical mechanics is thus an inherently probabilistic description of the system, and familiarity with manipulations of probabilities is an important prerequisite. The purpose of this chapter is to review some important results in the theory of probability, and to introduce the notations that will be used in the following chapters.
Kinetic theorystudies the macroscopic properties of large numbers of particles, starting from their (classical) equations of motion.
Thermodynamics describes the equilibrium behavior of macroscopic objects in terms of concepts such as work, heat, and entropy. The phenomenological laws of thermodynamics tell us how these quantities are constrained as a system approaches its equilibrium. At the microscopic level, we know that these systems are composed of particles (atoms, molecules), whose interactions and dynamics are reasonably well understood in terms of more fundamental theories. If these microscopic descriptions are complete, we should be able to account for the macroscopic behavior, that is, derive the laws governing the macroscopic state functions in equilibrium. Kinetic theory attempts to achieve this objective. In particular, we shall try to answer the following questions:
How can we define “equilibrium” for a system of moving particles?
Do all systems naturally evolve towards an equilibrium state?
What is the time evolution of a system that is not quite in equilibrium?
The simplest system to study, the veritable workhorse of thermodynamics, is the dilute (nearly ideal) gas. A typical volume of gas contains of the order of 1023 particles, and in kinetic theory we try to deduce the macroscopic properties of the gas from the time evolution of the set of atomic coordinates.
Statistical mechanicsis a probabilistic approach to equilibrium macroscopic properties of large numbers of degrees of freedom.
As discussed in chapter 1, equilibrium properties of macroscopic bodies are phenomenologically described by the laws of thermodynamics. The macrostate M depends on a relatively small number of thermodynamic coordinates. To provide a more fundamental derivation of these properties, we can examine the dynamics of the many degrees of freedom comprising a macroscopic body. Description of each microstate µ requires an enormous amount of information, and the corresponding time evolution, governed by the Hamiltonian equations discussed in chapter 3, is usually quite complicated. Rather than following the evolution of an individual (pure) microstate, statistical mechanics examines an ensemble of microstates corresponding to a given (mixed) macrostate. It aims to provide the probabilities PM(µ) for the equilibrium ensemble. Liouville's theorem justifies the assumption that all accessible microstates are equally likely in an equilibrium ensemble. As explained in chapter 2, such assignment of probabilities is subjective. In this chapter we shall provide unbiased estimates of PM(µ) for a number of different equilibrium ensembles. A central conclusion is that in the thermodynamic limit, with large numbers of degrees of freedom, all these ensembles are in fact equivalent. In contrast to kinetic theory, equilibrium statistical mechanics leaves out the question of how various systems evolve to a state of equilibrium.
Thermodynamicsis a phenomenological description of properties of macroscopic systems in thermal equilibrium.
Imagine yourself as a post-Newtonian physicist intent on understanding the behavior of such a simple system as a container of gas. How would you proceed? The prototype of a successful physical theory is classical mechanics, which describes the intricate motions of particles starting from simple basic laws and employing the mathematical machinery of calculus. By analogy, you may proceed as follows:
Idealize the system under study as much as possible (as is the case of a point particle). The concept of mechanical work on the system is certainly familiar, yet there appear to be complications due to exchange of heat. The solution is first to examine closed systems, insulated by adiabatic walls that don't allow any exchange of heat with the surroundings. Of course, it is ultimately also necessary to study open systems, which may exchange heat with the outside world through diathermic walls.
As the state of a point particle is quantified by its coordinates (and momenta), properties of the macroscopic system can also be described by a number of thermodynamic coordinates or state functions. The most familiar coordinates are those that relate to mechanical work, such as pressure and volume (for a fluid), surface tension and area (for a film), tension and length (for a wire), electric field and polarization (for a dielectric), etc.
We noted in the previous chapter that the singular behavior of thermodynamic functions at a critical point (the termination of a coexistence line) can be characterized by a set of critical exponents {α, β, γ, …}. Experimental observations indicate that these exponents are quite universal, i.e. independent of the material under investigation, and to some extent, of the nature of the phase transition. For example, the vanishing of the coexistence boundary in the condensation of CO2 has the same singular behavior as that of the phase separation of protein solutions into dilute and dense components. This universality of behavior needs to be explained. We also noted that the divergence of the response functions, as well as direct observations of fluctuations via scattering studies, indicate that fluctuations have long wavelengths in the vicinity of the critical point, and are correlated over distances ξ ≫ a, where a is a typical interparticle spacing. Such correlated fluctuations involve many particles and a coarse-graining approach, in the spirit of the theory of elasticity, may be appropriate to their description. Here we shall construct such a statistical field theory.
We shall frame the discussion in the language of a magnetic system whose symmetries are more transparent, although the results are of more general applicability. Consider a material such as iron, which is experimentally observed to be ferromagnetic below a Curie temperature Tc, as in Fig. 1.4.
Many scientists and non-scientists are familiar with fractals, abstract self-similar entities which resemble the shapes of clouds or mountain landscapes. Fewer are familiar with the concepts of scale-invariance and universality which underlie the ubiquity of these shapes. Such properties may emerge from the collective behavior of simple underlying constituents, and are studied through statistical field theories constructed easily on the basis of symmetries. This book demonstrates how such theories are formulated, and studied by innovative methods such as the renormalization group.
The material covered is directly based on my lectures for the second semester of a graduate course on statistical mechanics, which I have been teaching on and off at MIT since 1988. The first semester introduces the student to the basic concepts and tools of statistical physics, and the corresponding material is presented in a companion volume. The second semester deals with more advanced applications – mostly collective phenomena, phase transitions, and the renormalization group, and familiarity with basic concepts is assumed. The primary audience is physics graduate students with a theoretical bent, but also includes postdoctoral researchers and enterprising undergraduates. Since the material is comparatively new, there are fewer textbooks available in this area, although a few have started to appear in the last few years. Starting with the problem of phase transitions, the book illustrates how appropriate statistical field theories can be constructed on the basis of symmetries.