We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This book combines a comprehensive state-of-the-art analysis of bifurcations of discrete-time dynamical systems with concrete instruction on implementations (and example applications) in the free MATLAB® software MatContM developed by the authors. While self-contained and suitable for independent study, the book is also written with users in mind and is an invaluable reference for practitioners. Part I focuses on theory, providing a systematic presentation of bifurcations of fixed points and cycles of finite-dimensional maps, up to and including cases with two control parameters. Several complementary methods, including Lyapunov exponents, invariant manifolds and homoclinic structures, and parts of chaos theory, are presented. Part II introduces MatContM through step-by-step tutorials on how to use the general numerical methods described in Part I for simple dynamical models defined by one- and two-dimensional maps. Further examples in Part III show how MatContM can be used to analyze more complicated models from modern engineering, ecology, and economics.
This undergraduate textbook is a rigorous mathematical introduction to dynamical systems and an accessible guide for students transitioning from calculus to advanced mathematics. It has many student-friendly features, such as graded exercises that range from straightforward to more difficult with hints, and includes concrete applications of real analysis and metric space theory to dynamical problems. Proofs are complete and carefully explained, and there is opportunity to practice manipulating algebraic expressions in an applied context of dynamical problems. After presenting a foundation in one-dimensional dynamical systems, the text introduces students to advanced subjects in the latter chapters, such as topological and symbolic dynamics. It includes two-dimensional dynamics, Sharkovsky's theorem, and the theory of substitutions, and takes special care in covering Newton's method. Mathematica code is available online, so that students can see implementation of many of the dynamical aspects of the text.
Fluid flow turbulence is a phenomenon of great importance in many fields of engineering and science. Turbulence and related areas have continued to be subjects of intensive research over the last century. In this second edition of their successful textbook Professors Landahl and Mollo-Christensen have taken the opportunity to include recent developments in the field of chaos and its applications to turbulent flow. This timely update continues the original theme of the book: presenting the fundamental concepts and basic methods of fluid flow turbulence which enable the reader to follow the literature and understand current research. The emphasis upon the dynamic processes that create and maintain turbulent flows gives this book an original approach. This book should be useful to graduate students and researchers in fluid dynamics and, in particular, turbulence and related fields.
The multidisciplinary field of fluid mechanics is one of the most actively developing fields of physics, mathematics and engineering. This textbook, fully revised and enlarged for the second edition, presents the minimum of what every physicist, engineer and mathematician needs to know about hydrodynamics. It includes new illustrations throughout, using examples from everyday life, from hydraulic jumps in a kitchen sink to Kelvin–Helmholtz instabilities in clouds, and geophysical and astrophysical phenomena, providing readers with a better understanding of the world around them. Aimed at undergraduate and graduate students as well as researchers, the book assumes no prior knowledge of the subject and only a basic understanding of vector calculus and analysis. It contains forty-one original problems with very detailed solutions, progressing from dimensional estimates and intuitive arguments to detailed computations to help readers understand fluid mechanics.
This textbook presents a modern account of turbulence, one of the greatest challenges in physics. The state-of-the-art is put into historical perspective five centuries after the first studies of Leonardo and half a century after the first attempt by A. N. Kolmogorov to predict the properties of flow at very high Reynolds numbers. Such 'fully developed turbulence' is ubiquitous in both cosmical and natural environments, in engineering applications and in everyday life. The intended readership for the book ranges from first-year graduate students in mathematics, physics, astrophysics, geosciences and engineering, to professional scientists and engineers. Elementary presentations of dynamical systems ideas, of probabilistic methods (including the theory of large deviations) and of fractal geometry make this a self-contained textbook.