Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T03:22:41.176Z Has data issue: false hasContentIssue false

20 - Dispersion, Speciation, Evolution, and Coexistence of East Asian Catarrhine Primates and Humans in Yunnan, China

from Part IV - Asia

Published online by Cambridge University Press:  03 August 2022

Bernardo Urbani
Affiliation:
Venezuelan Institute for Scientific Research
Dionisios Youlatos
Affiliation:
Aristotle University, Thessaloniki
Andrzej T. Antczak
Affiliation:
Universiteit Leiden
Get access

Summary

Based on a broad literature review of journal and book publications, governmental archives, and annals, this study comprehensively examines the special contribution of Yunnan, China, to understanding East Asian catarrhines (colobines, macaques), as well as hominoids, gibbons, hominins, and modern ethnic groups since the Later Miocene or Early Pliocene. It spatially demonstrates their relationship, particularly that between primates and archaic and modern humans. The results indicate that a specific region in Yunnan, joining with the southeast Qinghai–Tibet Plateau, the end of the eastern margin of the Himalayas, and the Hengduan Mountains (SQPMH), is globally distinctive in promoting catarrhine dispersion, radiation, speciation, and evolution in East and Southeast Asia. This area forms the gateway between West, East and Southeast. Six major archaeological sites in Yunnan (Yuanmou, Jiangchuan, Tangzigou, Xianrendong, Xiaodong, and Maludong) share the same environments and habitats with primates, indicating a strong tendency for coexistence. Yunnan also offered an exclusive refugium for plants, animals, and humans during the glaciation so that it maintains the largest numbers of ethnic groups (26) and primate species (21 of 25 species) in China. Although primates inspired significant contributions to arts, culture, social life, and medical research for humans, as in other parts of China, they have suffered greatly in recent Chinese history, particularly since the second half of the last century, resulting in the extirpation of two gibbon species in the province.

Keywords

East Asia, Yunnan, Qinghai Tibet Plateau, Mts. Hengduan, Refugium, Homo, Primates, Dispersion, Catarrhine Evolution

Type
Chapter
Information
World Archaeoprimatology
Interconnections of Humans and Nonhuman Primates in the Past
, pp. 497 - 515
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

An, Z, S, Kutzbach, J. E., Prell, W. L., & Porter, S. C. (2001). Evolution of Asian monsoons and phased uplift of the Himalayan Tibetan plateau since Late Miocene times. Nature, 411(6833), 6266.Google Scholar
Arthur, W. (1943). Monkey. New York: Grove Press.Google Scholar
Bosboom, R. E., Dupont-Nivet, G., Houben, A. J. P., et al. (2011). Late Eocene sea retreat from the Tarim Basin (west China) and concomitant Asian paleoenvironmental change. Palaeogeography, Palaeoclimatology, Palaeoecology, 299, 385398.Google Scholar
Bowen, G. J., Clyde, W. C., Koch, P. L., et al. (2002). Mammalian dispersal at the Paleocene/Eocene boundary. Science, 295, 20622065.CrossRefGoogle ScholarPubMed
Brumm, A., Jensen, G. M., van den Bergh, G. D., et al. (2010). Hominins on Flores, Indonesia, by one million years ago. Nature, 464, 748752.CrossRefGoogle ScholarPubMed
Cang, M. (1997). On the Migration Culture of the Ethnic Groups in Yunnan. [In Chinese]. Kunming, China: The Nationalities Publishing House of Yunnan.Google Scholar
Chaimanee, Y., Suteethorn, V., Jintasakul, P., et al. (2004). A new orang-utan relative from the Late Miocene of Thailand. Nature, 427, 439441.CrossRefGoogle ScholarPubMed
Chang, C. H., Takai, M., & Ogino, S. (2012). First discovery of colobine fossils from the early to middle Pleistocene of southern Taiwan. Journal of Human Evolution, 63, 439451.CrossRefGoogle ScholarPubMed
Chatterjee, H. (2009). Evolutionary relationships among the gibbons: A biogeographic perspective. In The Gibbons New Perspectives on Small Ape Socioecology and Population Biology, ed. Lappan, S., & Whittaker, D. J.. Springer ScienceþBusiness Media, LLC, 2549.Google Scholar
Chen, S. Q., Hu, Y., Xie, L., & Zhou, C., (2007). Origin of Tibeto-Burman speakers: evidence from HLA allele distribution in Lisu and Nu inhabiting Yunnan of China. Human Immunology, 68(6), 550559.CrossRefGoogle ScholarPubMed
Curnoe, D., Xueping, J., Herries, A. I., & Kanning, B. (2012). Human remains from the Pleistocene-Holocene transition of southwest China suggest a complex evolutionary history for East Asians. PLoS ONE, 7, e31918.Google Scholar
Cyranoski, D. (2016). Monkey kingdom. Nature, 532(7599), 300302.CrossRefGoogle ScholarPubMed
Dong, W., Liu, J., & Fang, Y. (2013). The large mammals from Tuozidong (eastern China) and the Early Pleistocene environmental availability for early human settlements. Quaternary International, 295, 7382.Google Scholar
Fan, Z., & Song, Y. (2003). Chinese primate status and primate captive breeding for biomedical research in China. In International Perspectives: The Future of Nonhuman Primate Resources: Proceedings of the Workshop Held April 17–19, (2002), ed. U.S. Institute for Laboratory Animal Research. Washington, D.C.: The National Academies Press. 3645.Google Scholar
Gabbott, S. E., Hou, X. Q. Norry, M. J., & Siveter, D. J. (2004). Preservation of Early Cambrian animals of the Chengjiang biota. Geology, 32(10), 901904.CrossRefGoogle Scholar
Grehan, J. R., & Schwartz, J. H. (2009). Evolution of the second orangutan: phylogeny and biogeography of hominid origins. Journal of Biogeography, 36(10), 18231844.Google Scholar
Hao, X. (2007). Monkey research in China: developing a natural resource. Cell, 129(6), 10331036.CrossRefGoogle Scholar
Harrison, T. (2005). The zoogeographic and phylogenetic relationships of early catarrhine primates in Asia. Anthropological Science, 113(1), 4351.Google Scholar
Harrison, T. (2016). The fossil record and evolutionary history of Hylobatids. In Evolution of Gibbons and Siamang. Developments in Primatology: Progress and Prospects., ed. Reichard, U. H., & Barelli, C., New York: Springer, 91110.Google Scholar
Harrison, T., Jin, C., Zhang, Y., et al. (2014). Fossil Pongo from the Early Pleistocene Gigantopithecus fauna of Chongzuo, Guangxi, southern China. Quaternary International, 354, 5967.Google Scholar
Hou, X. G. (2016). New rare bivalved arthropods from the Lower Cambrian Chengjiang fauna, Yunnan, China. Journal of Paleontology, 73(1), 102116.Google Scholar
Hou, X., Siveter, D., Aldridge, R., et al. (2017). The Cambrian Fossils of Chengjiang, China: The Flowering of Early Animal Life, 2nd ed. Hoboken: John Wiley & Sons Ltd.CrossRefGoogle Scholar
Hyodo, M., Nakaya, H., Urabe, A., et al. (2002). Paleomagnetic dates of hominid remains from Yuanmou, China, and other Asian sites. Journal of Human Evolution, 43(1), 2741.Google Scholar
Jablonski, N. G. (1998). The response of catarrhine primates to pleistocene environmental fluctuations in East Asia. Primates, 39(1), 2937.Google Scholar
Jablonski, N. G. (2002). Fossil Old World monkeys: the late Neogene radiation. In Hartwig, W. C., eds., The Primate Fossil Record. Cambridge: Cambridge University Press, 255299Google Scholar
Jablonski, N. G., & Chaplin, G. (2009). The fossil record of gibbons. In Lappan, S., & Whittaker, D. L., ed., The Gibbons: New Perspectives on Small Ape Socioecology and Population Biology New York: Springer, 111130Google Scholar
Jablonski, N. G., & Tyler, D. E. (1999). Trachypithecus auratus sangiranensis: A new fossil monkey from Sangiran, Central Java, Indonesia. International Journal of Primatology, 20(1), 319326.Google Scholar
Jablonski, N. G., Ji, X. P., Kelley, J., et al. (2020). Mesopithecus pentelicus from Zhaotong, China, the easternmost representative of a widespread Miocene cercopithecoid species. Journal of Human Evolution, 146:102851.Google Scholar
Jaeger, J. J., So, A. N., Chavasseau, O., et al. (2011). First hominoid from the Late Miocene of the Irrawaddy Formation (Myanmar). PLoS ONE, 6, e17065.CrossRefGoogle ScholarPubMed
Ji, X. (2014). Encyclopedia of Global Archaeology. New York: Springer Science+Business Media.Google Scholar
Ji, X. P., Jablonski, N. G., Su, D. F., et al. (2013). Juvenile hominoid cranium from the terminal Miocene of Yunnan, China. Chinese Science Bulletin, 58, 37713779.Google Scholar
Ji, X., Curnoe, D., Taço, P., et al. (2016a). Cave use and palaeoecology at Maludong (Red Deer Cave), Yunnan, China. Journal of Archaeological Science: Reports, 8, 277283.Google Scholar
Ji, X., Kuman, K., Clarke, R. J., et al. (2016b). The oldest Hoabinhian technocomplex in Asia (43.5 ka) at Xiaodong rockshelter, Yunnan Province, southwest China. Quaternary Internationa,l 400, 166174.Google Scholar
Ji, X. P., Youlatos, D., Jablonski, N. G., et al. (2020). Oldest colobine calcaneus from East Asia (Zhaotong, Yunnan, China). Journal of Human Evolution, 147, 102866.Google Scholar
Jiang, Z., Meng, Z., Zeng, Y., et al. (2008). CITES no-detrimental finding for exporting rhesus monkeys (Macaca mulatta) from China. NDF Workshop case study. WG5-Mammals, 6, 115.Google Scholar
Jin, J. (2010). Zooarchaeological and taphonomic analysis of the faunal assemblage from Tangzigou, Southwestern China. PhD dissertation, Pennsylvania State University.Google Scholar
Jin, J. H., Jablonski, N. G., Flynn, L. J., et al. (2012). Micromammals from an early Holocene archaeological site in southwest China: Paleoenvironmental and taphonomic perspectives. Quaternary International, 281, 5865.CrossRefGoogle Scholar
Kelley, J., & Gao, F. (2012). Juvenile hominoid cranium from the late Miocene of southern China and hominoid diversity in Asia. Proceedings of the National Academy of Sciences of the United States of America, 109, 68826885.CrossRefGoogle ScholarPubMed
Larick, R., Ciochon, R. L., Zaim, Y., et al. (2001). Early Pleistocene 40Ar/39Ar ages for Bapang Formation hominins, Central Jawa, Indonesia. Proceedings of the National Academy of Sciences of the United States of America, 98(9), 48664871.Google Scholar
Li, J., Zeng, W., Zhang, Y., et al. (2017). Ancient DNA reveals genetic connections between early Di-Qiang and Han Chinese. BMC Evolutionary Biology, 17, 239.Google Scholar
Li, B. G., Li, M., Li, J. H., et al. (2018). The primate extinction crisis in China: immediate challenges and a way forward. Biodiversity and Conservation, 27, 33013327.Google Scholar
Li, B. G., He, G., Guo, S. T., et al. (2020). Macaques in China: Evolutionary dispersion and subsequent development. American Journal of Primatology, 82(7), e23142.CrossRefGoogle Scholar
Li, X. (2003). The historical and cultural features of the Zang (Tibetan)-Yi Corridor. Forum on Chinese Culture, 45.Google Scholar
Liu, W., Gao, F., & Zheng, L. (2002). The diet of the Yuanmou Hominoid, Yunnan Province, China: An analysis from tooth size and morphology. Anthropological Science, 110, 149163.Google Scholar
Liu, Y. & Li, W. (2013). A comparison of the themes of The Journey to the West and The Pilgrim’s Progress. Theory and Practice in Language Studies, 3(7), 12431249.CrossRefGoogle Scholar
Lou, H. (2016). A comparative study of the Chinese trickster hero Sun Wukong. Master’s thesis Duke University.Google Scholar
Lu, H., Jiang, D., Motani, R., et al. (2018). Middle Triassic Xingyi Fauna: Showing turnover of marine reptiles from coastal to oceanic environments. Palaeoworld, 27(7), 107116.Google Scholar
Luo, L., Granger, D. E., Tu, H., et al. (2020). The first radiometric age by isochron 26Al/10Be burial dating for the Early Pleistocene Yuanmou hominin site, southern China. Quaternary Geochronology, 55, 101022.Google Scholar
Ma, S. (1979). Probe on the Chinese origin of gibbons (Hylobates). Acta Theriologica Sinica, 17, 1323.Google Scholar
Marwick, B. (2009). Biogeography of Middle Pleistocene hominins in mainland Southeast Asia: A review of current evidence. Quaternary International, 202, 5158.Google Scholar
Meldrum, D. J., & Pan, Y. (1988). Manual proximal phalanx of Laccopithecus robustus from the Latest Miocene site of Lufeng. Journal of Human Evolution, 17, 719731.Google Scholar
Mishra, S., Gaillard, C., Hertler, C., et al. (2010). India and Java: Contrasting records, intimate connections. Quaternary International, 223 -224, 265270.Google Scholar
Myers, N., Mittermeier, R. A., Mittermeier, C. G., et al. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853858.Google Scholar
Ni, X., Wang, Y., Hu, Y., & Li, C. (2004). A euprimate skull from the early Eocene of China. Nature, 427,(6969), 6568.Google Scholar
Ni, X., Gebo, D., Dagosto, M., et al. (2013). The oldest known primate skeleton and early haplorhine evolution. Nature, 498(7452), 6064.CrossRefGoogle ScholarPubMed
Nishimura, T. D., Takai, M., Senut, B., et al. (2012). Reassessment of Dolichopithecus (Kanagawapithecus) leptopostorbitalis, a colobine monkey from the Late Pliocene of Japan. Journal of Human Evolution, 62, 548561.Google Scholar
Ni, Q., Wang, Y., Weldon, A., et al. (2018). Conservation implications of primate trade in China over 18 years based on web news reports of confiscations. PeerJ, 6, e6069.Google Scholar
Ortiz, A., Pilbrow, V., Villamil, C., et al. (2015). The taxonomic and phylogenetic affinities of Bunopithecus sericus, a fossil hylobatid from the Pleistocene of China. PLoS ONE, 10, e0131206.CrossRefGoogle ScholarPubMed
Ortiz, A., Zhang, Y. Q., Jin, C. Z., et al. (2019). Morphometric analysis of fossil hylobatid molars from the Pleistocene of southern China. Anthropological Science, 127(2), 109121.Google Scholar
Pan, R., Peng, Y., Zhang, X., & Pan, R. (1992). Cercopithecid fossils discovered in Yunnan and its stratigraphical significance Acta Anthropologica Sinica, 11(4), 303311.Google Scholar
Pan, R. L., Oxnard, C. C., Gruete, C. C., et al. (2016). A new conservation strategy for China-A model starting with primates. American Journal of Primatology, 78(11), 11371148.Google Scholar
Petraglia, M. D. (2010). The Early Paleolithic of the Indian Subcontinent: Hominin colonization, dispersals and occupation history. In Fleagle, J. G., et al., eds., Out of Africa I: The First Hominin Colonization of Eurasia, Vertebrate Paleobiology and Paleoanthropology, Dordrecht: Springer Science+Business Media, 165179.CrossRefGoogle Scholar
Potts, R., & Teague, R. (2010). Behavioral and environmental background to ‘Out-of-Africa I’ and the arrival of Homo erectus in East Asia. In Fleagle, J. G., et al., eds., Out of Africa I: The First Hominin Colonization of Eurasia, Vertebrate Paleobiology and Paleoanthropology, London and New York: Springer Science+Business Media B.V., 6785.Google Scholar
Qi, G., Dong, W., Zheng, L., et al. (2006). Taxonomy, age and environment status of the Yuanmou hominoids. Chinese Science Bulletin, 51, 704712.CrossRefGoogle Scholar
Qiu, J. (2016). The forgotten continent, fossil finds in China are challenging ideas about the evolution of modern humans and our closest relatives. Nature, 535(7611), 218220.Google Scholar
Qiu, Z., & Li, C. (2005). Evolution of Chinese mammalian faunal regions and elevation of the Qinghai-Xizang (Tibet) Plateau. Science in China Series D, 48, 12461258.Google Scholar
Roos, C., Kothe, M., Alba, D. M., et al. (2019). The radiation of macaques out of Africa: Evidence from mitogenome divergence times and the fossil record. Journal of Human Evolution, 133, 114132.Google Scholar
Roos, C., Zinner, D., Kubatko, L. S., et al. (2011). Nuclear versus mitochondrial DNA: evidence for hybridization in colobine monkeys. BMC Evolutionary Biology, 11, 77.Google Scholar
Schick, K., & Zhuan, D. (2005). Early paleolithic of China and eastern Asia. Evolutionary Anthropology, 2(1), 2235.Google Scholar
Shen, T. (2017). Recognition of symbols in different cultures: Chinese culture vs. non-Chinese culture. Master’s thesis, Iowa State University.Google Scholar
Shi, S. (2000). The historical changes and features of the ethnic corridor in the western part of Sichuan Province. Tian Fu New Idea, 90, 9093.Google Scholar
Shu, D. G., Morris, S. C., Han, J., et al. (2001). Primitive deuterostomes from the Chengjiang LagerstaÈtte (Lower Cambrian, China). Nature, 414( 6862), 419424.Google Scholar
Shunkov, M. V., & Derevyanko, A. R. (2016). Where has Homo sapience come from? In Science First Hand, 49, Art. 2.Google Scholar
Sonakia, A., & Biswas, B. (1998). Antiquity of the Narmada Homo erectus, the early man of India. Current Science, 75(4), 391393.Google Scholar
Stewart, C. B., & Disotell, T. R. (1998). Primate evolution in and out of Africa. Current Biology, 8(4), 582588.Google Scholar
Su, B., Xiao, J., Underhill, P., et al. (1999). Y-Chromosome evidence for a northward migration of modern humans into Eastern Asia during the last Ice Age. American Journal of Human Genetics, 65(6), 17181724.Google Scholar
Sun, H., Zhou, C., Huang, X., et al. (2013). Autosomal STRs provide genetic evidence for the hypothesis that Tai people originate from southern China. PLoS ONE, 8, e60822.Google Scholar
Taçon, P., Tan, N., O’Connor, S., et al. (2015). The global implications of the early surviving rock art of greater Southeast Asia. Antiquity, 88(342), 10501064.Google Scholar
Takai, M., Nishioka, Y., Thaung, H., et al. (2015a). Late Pliocene Semnopithecus fossils from central Myanmar: rethinking of the evolutionary history of cercopithecid monkeys in Southeast Asia. Historical Biology, 28(1–2), 172188.CrossRefGoogle Scholar
Takai, M., Thaung, H., Zin Maung Maung, T., et al. (2015b). First discovery of colobine fossils from the Late Miocene/Early Pliocene in central Myanmar. Journal of Human Evolution, 84, 115.Google Scholar
Tyler, D. E. (1993). The evolutionary history of the gibbon. In Evolving Landscapes and Evolving Biotas of East Asia since the Mid-Tertiary,. In Jablonski, N. G., & Chak-Lam, So, eds., Hong Kong: University of Hong Kong, 228240Google Scholar
van den Bergh, G. D., Kaifu, Y., Kurniawan, I., et al. (2016). Homo floresiensis-like fossils from the early Middle Pleistocene of Flores. Nature, 534(7606), 245248.Google Scholar
Wang, J., Wu, R., He, D., et al. (2018a). Spatial relationship between climatic diversity and biodiversity conservation value. Conservation Biology, 32(6), 12661277.Google Scholar
Wang, N. S. (1984). An introduction to rock painting in Yunnan Province. Rock Art Research, 1, 7584.Google Scholar
Wang, M., Wang, Z., He, G., et al. (2018b). Genetic characteristics and phylogenetic analysis of three Chinese ethnic groups using the Huaxia Platinum System. Scientific Reports, 8, 2429.Google Scholar
Wedage, O., Amano, N., Langley, M. C., et al. (2019). Specialized rainforest hunting by Homo sapiens ~45,000 years ago. Nature Communications, 10, 739.Google Scholar
Wen, R. (2009). The Distribution and Changes of Rare Wild Animals in China. Shandong: Academic Press of Shandong. [In Chinese]Google Scholar
Wen, R. (2013). Geographical Distribution of Wild Animals in Ancient China. Jinan: Academic Press in Shandong. [In Chinese]Google Scholar
Wu, Z. H., Ye, P. S., Barosh, P. J. et al. (2013). Early Cenozoic multiple thrust in the Tibetan Plateau. Journal of Geological Research, 2013, 112.Google Scholar
Xin, S. (2018). The monkey in Chinese culture. Youlin Magazine, A Culture Journal.Google Scholar
Xing, S., Martinon-Torres, M., & Bermudez de Castro, J. M. (2018). The fossil teeth of the Peking Man. Scientific Reports, 8, 2066.CrossRefGoogle ScholarPubMed
Xing, Y., & Ree, R. H. (2017). Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proceedings of the National Academy of Sciences of the United States of America, 114, E3444E3451.Google Scholar
Xu, J. C., Grumbine, R. E., & Beckschäfer, P. (2014). Landscape transformation through the use of ecological and socioeconomic indicators in Xishuangbanna, Southwest China, Mekong Region. Ecological Indicators, 36, 749756.Google Scholar
Yang, Y. M., Tian, K., Hao, J. M., et al. (2004). Biodiversity and biodiversity conservation in Yunnan, China. Biodiversity and Conservation, 13, 813826.Google Scholar
Yao, Y., Zhang, B., Han, F., & Pang, Y. (2010). Diversity and geographical pattern of altitudinal belts in the Hengduan Mountains in China. Journal of Mountain Science, 7(2), 123132.Google Scholar
Yao, Y. F., Bruch, A. A., Cheng, Y. M., et al. (2012). Monsoon versus uplift in southwestern China--Late Pliocene climate in Yuanmou Basin, Yunnan. PLoS ONE, 7, e37760.Google Scholar
Yao, Y. G., & Zhang, Y. P. (2002). Phylogeographic analysis of mtDNA variation in four ethnic populations from Yunnan Province: new data and a reappraisal. Journal of Human Genetics, 47(6), 311318.Google Scholar
Yao, Y. G., Nie, L., Harpending, H., et al. (2002). Genetic relationship of Chinese ethnic populations revealed by mtDNA sequence diversity. American Journal of Physical Anthropology, 118(1), 6376.Google Scholar
Ying, J. (2001). Species diversity and distribution pattern of seed plants in China. Chinese Biodiversity, 9(4), 393398.Google Scholar
Zhang, D., Fengquan, L., & Jianmin, B. (2000). Eco-environmental effects of the Qinghai-Tibet Plateau uplift during the Quaternary in China. Environmental Geology 39(12), 13521359.Google Scholar
Zhang, J., & Cao, M. (1995). Tropical forest vegetation of Xishuangbanna, SW China and its secondary changes, with special reference to some problems in local nature conservation. Biological Conservation, 73(3), 229238.CrossRefGoogle Scholar
Zhang, X., Gen, D., & Liu, H. (1992). Early Holocene mammal fauna from Tangzigou. In Baoshan Prehistoric Archaeology Kunming, China: Yunnan Science and Technology Press. [In Chinese]Google Scholar
Zhang, X., Ji, X., & Shen, G. (2004). U-series dating on fossil teeth from Xianren Cave in Xichou, Yunnan Province. Acta Anthropologica Sinica, 23, 8892.Google Scholar
Zhang, X. L., Shu, D. G., Li, Y., & Han, J. (2001). New sites of Chengjiang fossils: crucial windows on the Cambrian explosion. Journal of the Geological Society, 158, 211218.Google Scholar
Zhang, Z. (2006). Chinese Late Neogene land mammals comunity and the envronmental changes of East Asia. Vertebrata PalAsiatica, 44(2), 133142.Google Scholar
Zhao, F. C., Hu, S. X., Caron, J. B., et al. (2012). Spatial variation in the diversity and composition of the Lower Cambrian (Series 2, Stage 3) Chengjiang Biota, Southwest China. Palaeogeography, Palaeoclimatology, Palaeoecology, 346 –347, 5465.Google Scholar
Zhao, J., Yuan, X., Liu, H., et al. (2010). The boundary between the Indian and Asian tectonic plates below Tibet. Proceedings of the National Academy of Sciences of the United States of America 107, 1122911233.Google Scholar
Zhao, X., Ren, B., Garber, P. A., et al. (2018). Impacts of human activity and climate change on the distribution of snub-nosed monkeys in China during the past 2000 years. Diversity and Distributions, 24(1), 92102.Google Scholar
Zhu, R. X., Potts, R., Pan, Y. X., et al. (2008). Early evidence of the genus Homo in East Asia. Journal of Human Evolution, 55, 10751085.Google Scholar
Zhu, Z., Dennell, R., Huang, W., et al. (2018). Hominin occupation of the Chinese Loess Plateau since about 2.1 million years ago. Nature, 559 (7715), 608612.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×