from Algebra and Number Theory
This article gives a brief sketch of the evolution of group theory. It derives from a firm conviction that the history of mathematics can be a useful and important integrating component in the teaching of mathematics. This is not the place to elaborate on the role of history in teaching, other than perhaps to give one relevant quotation (C. H. Edwards [11]):
Although the study of the history of mathematics has an intrinsic appeal of its own, its chief raison déêtre is surely the illumination of mathematics itself. For example the gradual unfolding of the integral concept from the volume computations of Archimedes to the intuitive integrals of Newton and Leibniz and finally to the definitions of Cauchy, Riemann and Lebesgue—cannot fail to promote a more mature appreciation of modern theories of integration.
The presentation in one article of the evolution of so vast a subject as group theory necessitated severe selectivity and brevity. It also required omission of the broader contexts in which group theory evolved, such as wider currents in abstract algebra, and in mathematics as a whole. (We will note some of these interconnections shortly.) We trust that enough of the essence and main lines of development in the evolution of group theory have been retained to provide a useful beginning from which the reader can branch out in various directions. For this the list of references will prove useful.
The reader will find in this article an outline of the origins of the main concepts, results, and theories discussed in a beginning course on group theory.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.