Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-03T08:32:41.717Z Has data issue: false hasContentIssue false

3 - Theodore von Kármán

Published online by Cambridge University Press:  07 October 2011

A. Leonard
Affiliation:
Graduate Aerospace Laboratories
N. Peters
Affiliation:
Institut für Technische Verbrennung
Peter A. Davidson
Affiliation:
University of Cambridge
Yukio Kaneda
Affiliation:
Nagoya University, Japan
Keith Moffatt
Affiliation:
University of Cambridge
Katepalli R. Sreenivasan
Affiliation:
New York University
Get access

Summary

Introduction

Theodore von Kármán, distinguished scientist and engineer with many interests, was born in Budapest on 11 May 1881. His father, Maurice von Kármán, a prominent educator and philosopher at the University of Budapest, had a significant influence over his early intellectual development. After graduating from the Royal Technical University of Budapest in 1902 with a degree in mechanical engineering, von Kármán published in 1906 the first of a long string of papers concerning solid mechanics problems outside the domain of linear elasticity theory, in this case on the compression and buckling of columns. In that same year, apparently at the urging of his father, von Kármán left Hungary for graduate studies at Göttingen. For his 1908 PhD, supervised by Ludwig Prandtl, he developed the concepts of reduced-modulus theory and their application to column behavior such as buckling. Later, with H.-S. Tsien and others, he developed a nonlinear theory for the buckling of curved sheets. His final work in solid mechanics was on the propagation of waves of plastic deformation published as a classified report in 1942 and in the open literature in 1950. In von Kármán's words:

It was another version of the problem I had solved for my doctor's thesis, in which I had extended Euler's classical theory of buckling to a situation beyond the elastic limit.

(von Kármán and Edson, 1967, p. 248)
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barenblatt, G.I. 1993. Scaling laws for fully developed turbulent shear flows. J. Fluid Mech., 248, 513–520.CrossRefGoogle Scholar
Batchelor, G.K. 1953. The Theory of Homogeneous Turbulence. Cambridge University Press, xi+197 pp.Google Scholar
Batchelor, G.K., and Proudman, I. 1956. The large-scale structure of homogeneous turbulence. Phil. Trans. Roy. Soc. A, 248, 369–405.CrossRefGoogle Scholar
Batchelor, G.K., and Townsend, A.A. 1948. Decay of turbulence in the final period. Proc. Roy. Soc. A, 194, 527–543.CrossRefGoogle Scholar
CIT von Kármán collection. Papers of Theodore von Kármán, 1881–1963. Archives of the California Insitute of Technology.
Davidson, P.A. 2004. Turbulence. Oxford University Press, xix+657 pp.Google Scholar
Davidson, P.A. 2009. The role of angular momentum conservation in homogeneous turbulence. J. Fluid Mech., 632, 329–358.CrossRefGoogle Scholar
Dryden, H.L. 1943. A review of the statistical theory of turbulence. Quart. Appl. Math., 1, 7–42.CrossRefGoogle Scholar
Dryden, H.L. 1965. Theodore von Kármán. National Academy of Sciences, Biographical Memoirs, 38, 344–384.Google Scholar
Falkovich, G. 2011. The Russian school. In A Voyage Through Turbulence. Cambridge University Press.Google Scholar
George, W.K., Knecht, P., and Castillo, L. 1992. Zero-pressure gradient boundary layer revisited. In X. B., Reed, ed., 13th Symposium on Turbulence, Rolla, MO.Google Scholar
Heisenberg, W. 1948. Zur statistischen Theorie der Turbulenz. Z. Physik, 124, 628–657.CrossRefGoogle Scholar
Kármán, von T. 1921. Über laminare und turbulente Reibung. ZAMM, 1, 233–252.CrossRefGoogle Scholar
Kármán, von T. 1924. Über die Stabilität der Laminarströmung und die Theorie der Turbulenz. Proc. First Internat. Congr. Appl. Mech., Delft.
Kármán, von T. 1930. Mechanische Ähnlichkeit und Turbulenz. Gött. Nachr., 58–76.
Kármán, von T. 1931. Mechanische Ähnlichkeit und Turbulenz. Proc. Third Internat. Congr. Appl. Mech. Stockholm, 1, 85–93.Google Scholar
Kármán, von T. 1937a. The fundamentals of the statistical theory of turbulence. J. Aero. Sci., 4, 131–138.CrossRefGoogle Scholar
Kármán, von T. 1937b. On the statistical theory of turbulence. Proc. Nat. Acad. Sci., 23, 98–105.CrossRefGoogle Scholar
Kármán, von T. 1948a. Progress in the statistical theory of turbulence. Proc. Nat. Acad. Sci., 34, 530–539.CrossRefGoogle Scholar
Kármán, von T. 1948b. Progress in the statistical theory of turbulence. J. Marine Res., 7, 252–264.Google Scholar
Kármán, von T. 1948c. Sur la théorie statistique de la turbulence. C.R. Acad. Sci. Paris, 226, 2108–2111.Google Scholar
Kármán, von T. 1955. The next fifty years. Interavia, 10, 20–21.Google Scholar
Kármán, von T., and Edson, L. 1967. Wind and Beyond. Little, Brown and Co., 376pp.Google Scholar
Kármán, von T., and Howarth, L. 1938. On the statistical theory of isotropic turbulence. Proc. Roy. Soc. A, 164, 192–215.CrossRefGoogle Scholar
Kármán, von T., and Lin, C.C. 1949. On the concept of similarity in the theory of isotropic turbulence. Rev. Mod. Phys., 21, 516–519.CrossRefGoogle Scholar
Kármán, von T., and Lin, C.C. 1951. On the concept of similarity in the theory of isotropic turbulence. Pages 1–19 of Adv. Appl. Mech., vol. 2. Academic Press, New York.Google Scholar
Kolmogorov, A.N. 1941a. Dissipation of energy in the locally isotropic turbulence. Dokl. Akad. Nauk SSSR, 32, 19–21.Google Scholar
Kolmogorov, A.N. 1941b. On decay of isotropic turbulence in an incompressible viscous fluid. Dokl. Akad. Nauk SSSR, 31, 538–540.Google Scholar
Kraichnan, R.H., and Spiegel, E.A. 1962. Model for energy transfer for isotropic turbulence. Phys. Fluids, 5, 583–588.CrossRefGoogle Scholar
Lin, C.C. 1944. On the stability of two-dimensional parallel flows. Proc. Nat. Acad. Sci., 30, 316–324.CrossRefGoogle ScholarPubMed
Lin, C.C. 1949a. Note on the law of decay of isotropic turbulence. Proc. Nat. Acad. Sci., 34, 540–543.CrossRefGoogle Scholar
Lin, C.C. 1949b. Remarks on the spectrum of turbulence. Pages 81–86 of Proceedings of Symposia in Applied Mathematics, Vol. 1 (Brown U., 1947). Amer. Math. Soc.Google Scholar
Loitsyanski, L.G. 1939. Some basic laws for isotropic turbulent flow. Trudy Tsentr. Aero.-Giedrodin. Inst., 440, 3–23.Google Scholar
Lundgren, T. S. 2002. Kolomogorov two-thirds law by matched asymptotic expansions. Phys. Fluids, 14, 638–642.CrossRefGoogle Scholar
Nikuradse, J. 1926. Untersuchungen über die Geschwindigkeitsverteilung in turbulenten Strömungen, Diss. Göttingen. VDI-Forschungsheft, 281.Google Scholar
Nikuradse, J. 1932. Gesetzmäßigkeit der turbulenten Strömung in glatten Rohren. Forsch. Arb. Ing.-Wes., Heft 356.Google Scholar
Oberlack, M. 2001. A unified approach for symmetries in plane parallel turbulent shear flows. J. Fluid Mech., 427, 299–328.CrossRefGoogle Scholar
Pope, S.B. 2000. Turbulent Flows. Cambridge University Press, xxxiv+771 pp.CrossRefGoogle Scholar
Prandtl, L. 1921. Bemerkungen zur Entstehung der Turbulenz. ZAMM, 1, 431–436.CrossRefGoogle Scholar
Prandtl, L. 1927. Über die ausgebildete Turbulenz. Verh. des 2. Internationalen Kongresses für Technische Mechanik 1926, Zürich, 62.
Prandtl, L. 1931. Abriß der Strömungslehre. Vieweg Verlag Braunschweig, 1. Auflage.
Prandtl, L. 1933. Neuere Ergebnisse der Turbulenzforschung. VDI, 77, 105–114.Google Scholar
Pullin, D. I., and Meiron, D. I. 2011. Philip G. Saffman. In A Voyage Through Turbulence. Cambridge University Press.Google Scholar
Saffman, P.G. 1967. The large-scale structure of homogeneous turbulence. J. Fluid Mech., 27, 581–593.CrossRefGoogle Scholar
Taylor, G.I. 1935. Statistical theory of turbulence. Proc. Roy. Soc. A, 151, 421–444.CrossRefGoogle Scholar
Taylor, G.I. 1937. The statistical theory of isotropic turbulence. J. Aero. Sci., 4, 311–315.CrossRefGoogle Scholar
Taylor, G.I., and Green, A.E. 1937. Mechanism of the production of small eddies from large ones. Proc. Roy. Soc. A, 158, 499–521.CrossRefGoogle Scholar
Tietjens, O. 1925. Articles on the formation of turbulence. ZAMM, 5, 200–217.CrossRefGoogle Scholar
Vincenti, W. G. 1990. What Engineers Know and How They Know It. The Johns Hopkins University Press. vii + 326 pp..Google Scholar
Wosnik, M., Castillo, L., and George, W.K. 2000. A theory for turbulent pipe and channel flows. J. Fluid Mech., 421, 115–145.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×