Published online by Cambridge University Press: 03 February 2010
In this book we study incompressible high Reynolds numbers and incompressible inviscid flows. An important aspect of such fluids is that of vortex dynamics, which in lay terms refers to the interaction of local swirls or eddies in the fluid. Mathematically we analyze this behavior by studying the rotation or curl of the velocity field, called the vorticity. In this chapter we introduce the Euler and the Navier–Stokes equations for incompressible fluids and present elementary properties of the equations. We also introduce some elementary examples that both illustrate the kind of phenomena observed in hydrodynamics and function as building blocks for more complicated solutions studied in later chapters of this book.
This chapter is organized as follows. In Section 1.1 we introduce the equations, relevant physical quantities, and notation. Section 1.2 presents basic symmetry groups of the Euler and the Navier–Stokes equations. In Section 1.3 we discuss the motion of a particle that is carried with the fluid. We show that the particle-trajectory map leads to a natural formulation of how quantities evolve with the fluid. Section 1.4 shows how locally an incompressible field can be approximately decomposed into translation, rotation, and deformation components. By means of exact solutions, we show how these simple motions interact in solutions to the Euler or the Navier–Stokes equations. Continuing in this fashion, Section 1.5 examines exact solutions with shear, vorticity, convection, and diffusion. We show that although deformation can increase vorticity, diffusion can balance this effect.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.