Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T06:23:02.412Z Has data issue: false hasContentIssue false

3 - Three-Dimensional Vortex Methods for Inviscid Flows

Published online by Cambridge University Press:  21 September 2009

Georges-Henri Cottet
Affiliation:
Université Joseph Fourier, Grenoble
Petros D. Koumoutsakos
Affiliation:
ETH-Zurich and CTR, NASA
Get access

Summary

The need of a specific discussion of vortex schemes in the context of three-dimensional flows stems from the very nature of the vorticity equation that in three dimensions incorporate a stretching term. This term fundamentally affects the dynamics of the flow; it is in particular responsible for vorticity intensification mechanisms that make long-time inviscid calculations very difficult. Vorticity stretching is considered as the mechanism by which energy is being transferred between the large and the small scales in the flow. In order to resolve related phenomena, such as the energy cascade, an adequate treatment of diffusion is thus even more crucial than in two dimensions. However, the recipes for deriving diffusion algorithms are the same in two and three dimensions (they are discussed in Chapter 5), and we focus here on inviscid three-dimensional vortex schemes. Vorticity intensification in general is associated with a rapid stretching of Lagrangian elements, which makes it also crucial to maintain the regularity of the particle mesh; we refer to Chapter 7 for a general discussion of regridding techniques.

We will discuss here two classes of vortex methods that extend to three dimensions the two-dimensional schemes introduced in Chapter 2. In the first one, the vorticity is replaced by a set of points (particles), just as in two dimensions, but these particles carry vectors instead of scalars. The stretching term in the vorticity equation is accounted for by appropriate laws that modify the circulations of the particles. We call these methods vortex particle methods.

Type
Chapter
Information
Vortex Methods
Theory and Practice
, pp. 55 - 89
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×